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DISCLAIMER

➤ Highly inspired by: 
O. Orshkov, F. Costa, Č. Brukner, „Quantum correlations with no 
causal order,“ Nat. Comm 3, 1092 (2012) 

➤ Nothing quantum / no quantum features! 

➤ Not formulated in the GR language / no specific type of 
systems (billiard balls, fields, etc.) 
Instead: Abstract formalism for classical and deterministic 
dynamics. 

➤ Very subtle CTCs; maybe not what you expect.



OUTLINE

➤ Motivation / Historical background 

➤ Consistency condition and „no new physics“ principle 

➤ Our approach 

➤ Properties of CTCs 

➤ Example



MOTIVATIONS

➤ Closed time-like curves are consistent with general relativity:



EINSTEIN (1914)



EINSTEIN (1914)

 
 
1916: 
Two letters to Carathéodory 
(remained unanswered) 
 
 



LANCZOS (1924)



GÖDEL (1949)



EXAMPLE OF CTC

M. Moris, K. Thorne, U. Yurtsever, PRL 61, 1446 (1988)



PRINCIPLE OF SELF-CONSISTENCY AND „NO NEW PHYSICS“

➤ The Self-Consistency Principle: 
Only self-consistent solutions occur. 

➤ Yet, there is more to that. 
The „No New Physics“ Principle: 

J. Friedmann, M Morris, I. Novikov, et al., PRD 42, 1915 (1990)



NO NEW PHYSICS AND BILLIARD BALLS

F. Echeverria, G. Klinkhammer, K. Thorne, PRD 44, 1077 (1991)
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New physics?



➤ Assume the principle not only in the past of CTCs, but also in 
localized space-time regions that are traversed.

OUR APPROACH
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Physics within L and at P does not 
depend on the presence or absence of 
the CTC.



DISCLAIMER

➤ Highly inspired by: 
O. Orshkov, F. Costa, Č. Brukner, „Quantum correlations with no 
causal order,“ Nat. Comm 3, 1092 (2012) 

➤ Nothing quantum / no quantum features! 

➤ Not formulated in the GR language / no specific type of 
systems (billiard balls, fields, etc.) 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CORE ASSUMPTION

Any classical operation that is possible in ordinary space-time should also 
be possible in the presence of CTCs, as long as the operation takes place in 
a localized region of space-time that does not contain CTCs.
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Local regions 
 
N non-overlapping CTC-free space-time regions (1,2,..,N). 
Decompose every region R into future and past boundary.

CORE ASSUMPTION

Any classical operation that is possible in ordinary space-time should also 
be possible in the presence of CTCs, as long as the operation takes place in 
a localized region of space-time that does not contain CTCs.

fR

OR

IR

state spaces, e.g., integers, realsIR,OR

fR : IR ! OR function on region R



Predictive theory 
 
There exists a function w that predicts the state on the 
past boundaries of the local regions. 
 
w=(w1,w2,…,wN)  
wR: O1×O2×…×ON     →  IR

CORE ASSUMPTION

Any classical operation that is possible in ordinary space-time should also 
be possible in the presence of CTCs, as long as the operation takes place in 
a localized region of space-time that does not contain CTCs.



Consistency condition 
 
There exists some state (i1,i2,…,iN) such that 
for every region R: 
iR = wR(o1,o2,…,oN) = wR(f1(i1),f2(i2),…,fN(iN))  
 
 
(i1,i2,…,iN) is a fixed point of the function w.   

CORE ASSUMPTION

Any classical operation that is possible in ordinary space-time should also 
be possible in the presence of CTCs, as long as the operation takes place in 
a localized region of space-time that does not contain CTCs.



Consistency condition is equivalent to: 
 
Irrelevance on how the local functions (f1,f2,…,fN) are 
implemented.

CORE ASSUMPTION

Any classical operation that is possible in ordinary space-time should also 
be possible in the presence of CTCs, as long as the operation takes place in 
a localized region of space-time that does not contain CTCs.



No-new-physics Principle: 
 
Consistency under any choice of local operations: 
 
           ∀ f1,f2,..,fN    ∃ i1,i2,…,iN: 
               iR = wR(f1(i1),f2(i2),…,fN(iN)) for every region R  

CORE ASSUMPTION

Any classical operation that is possible in ordinary space-time should also 
be possible in the presence of CTCs, as long as the operation takes place in 
a localized region of space-time that does not contain CTCs.



➤ Non-overlapping 
space-time regions (CTC-free) 

➤ Classical state spaces (not quantum) 

➤ Deterministic evolution 

➤ Consistency, 
No-new-physics principle

CORE ASSUMPTION (SUMMARY)
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PROPERTIES

➤ Special case of P-CTC framework 

➤ Unique dynamics (unique fixed points) 

➤ Reversible dynamics 

➤ Computational tameness 

➤ CTCs with three regions or more



PROPERTY: SPECIAL CASE OF P-CTC

➤ We recover a special case of the P-CTC  
framework. 
Namely: the linear special case. 
 
 

➤ Here: Classical state spaces as opposed to quantum. 
 

➤ The same can be done for quantum evolution.

ÄB, „Causal Loops,“ PhD Thesis (2017) 
M. Araújo, P. Allard Guérin, ÄB, PRA  96, 052315 (2017)



PROPERTY: UNIQUE DYNAMICS

➤ Consistency under any choice of local operations: 
 
           ∀ f1,f2,..,fN    ∃ i1,i2,…,iN: 
               iR = wR(f1(i1),f2(i2),…,fN(iN)) for every region R 
 
 
implies that the fixed point is unique: 
 
           ∀ f1,f2,..,fN    ∃ ! i1,i2,…,iN: 
               iR = wR(f1(i1),f2(i2),…,fN(iN)) for every region R 



PROPERTY: UNIQUE DYNAMICS

➤ Interpretation: 
 
By definition we exclude the „Grandfather antinomy.“  
 
No „unproven theorem“ paradox for free!  
 
The theory gives unique predictions!

D. Deutsch, PRD 44, 3197 (1991)



PROPERTY: REVERSIBLE DYNAMICS
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➤ Reversibility: 
 
Every function w can be 
embedded in a reversible 
function w’.



➤ Computational power: 
Upper bounded by UP ⋂ coUP, 
i.e., cannot* efficiently solve 
NP-complete problems. 
 
(*For discrete state spaces and under the assumption 

that the polynomial hierarchy does not collapse.) 
 

➤ Comply with NP-hardness assumption: 
Physically realizable models of computation 
cannot efficiently solve NP-complete problems.

PROPERTY: COMPUTATIONAL TAMENESS

coUP

coNP

UP

NP

PostBPP

PostBQP

PSPACE

P

classical „D-CTC“

classical „P-CTC“

ÄB, S. Wolf, Proc. R. Soc. A 474, 20170698 (2018)  
S. Aaronson, ACM SIGACT News 36, 30 (2005)  

see also K. Gödel, Letter to von Neumann (1956)



EXAMPLE WITH THREE REGIONS

➤ Binary state spaces: {0,1} 

➤ w:  {0,1}3  →  {0,1}3  
w: (a,b,c)  ⟼ ((b⊕1)c, (c⊕1)a, (a⊕1)b )                 ⊕: addition mod 2  
 
 
 
 
 
 
 
 
 
 
 

➤ Can be extended to reals, to more parties, and made reversible.
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maj(a, b, c) = 0 maj(a, b, c) = 1



CONCLUSION

➤ CTC dynamics are possible even if we retain „free choice,“ i.e., 
the no-new-physics principle. 

➤ Unique dynamics; no „unproven theorem“ paradox 

➤ Reversible dynamic 

➤ Computational tameness; 
cannot solve NP-complete problems efficiently 
 

➤ Ongoing work: Extension to the quantum case. 
How many of these properties persist?  
Special case (linear) of the P-CTC formalism.
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