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Motivation for alternative interpretations of quantum theory

• Abandon separation of classical and quantum world
• Quantum theory of closed systems such as the universe
• Copenhagen interpretation cannot deal with questions involving
time
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Consistent histories formalism

1 Fine­grained histories

2 Coarse­grained histories

3 Decoherence functional D(A,B) = Tr(CAρC
†
B) where

CA = Pαne
−iH(tn−tn−1)...Pα2e

−iH(t2−t1)Pα1e
−iH(t1−t0)

(i) Hermiticity D(A,B) = D∗(B,A)
(ii) Positivity D(A,B) > 0
(iii) Normalisation

∑
A,B D(A,B) = 1

(iv) Superposition principle D(A,B) =
∑

α∈A

∑
β∈B D(α, β)

4 Candidate probability p(A) = D(A,A)

5 Consistency condition D(A,B) ≈ 0



Consistent histories formalism



Contrary inferences

Assume two propositions with corresponding projection operators P
and Q at one moment of time.

• If [P,Q] ̸= 0, i.e. they do not commute, P,Q are called
complementary.

• If they are orthogonal, PQ = QP = 0 and add to the identity,
P = 1−Q they are called contradictory.

• Ιf they are orthogonal and not contradictory so that P < 1−Q
then they are called contrary.

• Contrary inference: when two contrary propositions are both
implied with probability one ­ Not possible in classical logic.

• BUT possible in contextual logic, provided there does not exist
any context containing both propositions.



Zero covers of the configuration space

• {Z1, Z2} is zero cover measure of Ω if µ(Z1) = 0, µ(Z2) = 0
and Z1 ∪ Z2 = Ω, Z1 ∩ Z2 ̸= ∅

• Contrary inferences when two consistent sets are defined in Ω
as:

C1 = {Z1, Z̄1}, where µ(Z1) = 0, µ(Z̄1) = 1,

C2 = {Z2, Z̄2}, where µ(Z2) = 0, µ(Z̄2) = 1

• Z̄1 ∩ Z̄2 = ∅ and Z̄1 ⫅ Z2, Z̄2 ⫅ Z1 thus contrary propositions
because e.g. µ(Z̄1) = 1 and µ(Z2) = 0.

In consistent histories, every zero cover measure which contains two
(coarse­grained) histories leads to contrary inferences (theorem).



The arrival time problem in quantum theory

What is the probability to find the particle at the interval∆ at any
time t? instead, we will ask

What is the probability to find the particle at the interval ∆̄ at a
specific time t?

1 Q = ∆ ∪ ∆̄

2 C∆̄ = g∆̄(t, t0), g(t, t0) = eiHt/h̄, C∆ = g∆(t, t0)

3 g∆̄ = |ψr(t)⟩
4 p∆̄ = D(∆̄, ∆̄) = ⟨ψ| P̄ |ψ⟩ ,
5 P̄ = g†r(t, t0)gr(t, t0) and Hr = P̄HP̄ self­adjoint inH∆̄ when
quadratic in momenta



The arrival time problem in quantum theory

D(∆, ∆̄) = ⟨ψ|C†
∆C∆̄ |ψ⟩ ≈ 0

This condition is satisfied when
1 boundary condition ⟨x|ψ0⟩∂∆ = 0 (so that gr(t, t0) |ψ⟩ = |ψr(t)⟩)
2 ⟨ψ(t)|ψr(t)⟩ = ⟨ψ(t0)| P̄ |ψ(t0)⟩ = 1

We will find two sets which satisfy the above conditions and show they
are consistent.



First consistent set



First consistent set

• Gaussian wave packet ΨG(x, 0) = Ae−(x+L/2)2/4σ2

eip0(x+L/2)/h̄

• Coarse­graining∆(t) = [−L+ ut, 0 + ut]

• A = 2
√
5√√

2π erf 5(L−2ut)√
2

+
√
2π erf 5(L+2ut)√

2

• For every t, the overlap is ⟨Ψ(x, t)|Ψr(x, t)⟩ ≈ 1

Thus, when we ask if the particle has passed to the positive axis, the
answer is YES!



Second consistent set



Second consistent set
• Ψ(x, 0) = 1√

σ
√
2π erf( L

2
√
2σ

)
e−(x+L/2)2/4σ2

eip0(x+L/2)/h̄

• Ψr(x, 0) =
1√

σ
√
2π 1

2

(
erf( L

2
√

2σ
)+erf( 3L

2
√

2σ
)
)e−(x+L/2)2/4σ2

eip0(x+L/2)/h̄

• ⟨ψr(t0)|ψ(t0)⟩ ≈ 1 because of the initial condition
• ⟨ψr(ti)|ψ(ti)⟩ ≈ 1

• Ψ(x, t) =
∑∞

n=1 cnψne
−iEnt/h̄

• un = sin nπx
L , vm = sin mπ(x+L)

2L
• Overlap

A(t) = ⟨Ψr(x, t)|Ψ(x, t)⟩ =
∞∑

n,m=1

(cLn)
∗c2Lm eiEt/h̄(n2−m2/4)

∫ 0

−L

un(x)vm(x)dx

= 1− ϵ(t)

• Classical limit (L = 2, p0 = 1,m = 1, h̄ = 1, σ = L/10)

A(Trev ≈ 8) = 0, 947 + 0, 001i, |A(Trev)|2 = 0, 897

The answer to whether the particle passed the x = 0 is NO!



Contrary inferences in the classical arrival time problem

Histories in the configuration space Ω = {h1, h2, h3, h4}

h1 = paths which follow the particle
h2 = paths which do not follow the particle
h3 = paths that remained in the negative axis all time from t = 0 till time t
h4 = paths that at some time within [0, t] crossed to the positive axis

Consistent sets C1 = {{h1}, {h2}}, C2 = {{h3}, {h4}}

h1 ⊂ h4, h1 ∪ h4 = Ω, h1 ∩ h4 ̸= ∅
µ(h1) = 1, µ(h4) = 0

Thus there are contrary inferences!



Discussion

1 Approximate decoherence
2 This problem exists even in quantum histories, even though it
can be avoided.

3 At the classical limit it is more severe, since we cannot even
make predictions for the semiclassical states, even when have
already intuition.

4 CH without selection criterion cannot recover classical intuition
in the classical limit.
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