

# Contrary Inferences for Classical Histories in the Consistent Histories Approach

in collaboration with Petros Wallden (U. Edinburgh) and Georgios Pavlou (U. Athens)

#### Adamantia Zampeli

Institute of Theoretical Physics, Charles University, Prague

The Time Machine Factory Conference, Turin, 2019

## Motivation for alternative interpretations of quantum theory

- Abandon separation of classical and quantum world
- Quantum theory of **closed systems** such as the **universe**
- Copenhagen interpretation cannot deal with questions involving time



### Overview

- 1 Consistent histories formalism
- 2 Contrary inferences
- 3 The semiclassical time-of-arrival problem
- 4 Discussion

### Consistent histories formalism

- 1 Fine-grained histories
- 2 Coarse-grained histories
- **3** Decoherence functional  $D(A, B) = Tr(C_A \rho C_B^{\dagger})$  where

$$C_A = P_{\alpha_n} e^{-iH(t_n - t_{n-1})} \dots P_{\alpha_2} e^{-iH(t_2 - t_1)} P_{\alpha_1} e^{-iH(t_1 - t_0)}$$

- (i) Hermiticity  $D(A, B) = D^*(B, A)$
- (ii) Positivity D(A,B) > 0
- (iii) Normalisation  $\sum_{A,B} D(A,B) = 1$
- (iv) Superposition principle  $D(A, B) = \sum_{\alpha \in A} \sum_{\beta \in B} D(\alpha, \beta)$
- 4 Candidate probability p(A) = D(A, A)
- **5** Consistency condition  $D(A, B) \approx 0$

#### Consistent histories formalism



## Contrary inferences

Assume two propositions with corresponding projection operators P and Q at one moment of time.

- If [P, Q] ≠ 0, i.e. they do not commute, P, Q are called **complementary**.
- If they are orthogonal, PQ = QP = 0 and add to the identity, P = 1 Q they are called **contradictory**.
- If they are orthogonal and not contradictory so that P < 1 Q then they are called **contrary**.
- **Contrary inference**: when two contrary propositions are both implied with **probability one** Not possible in classical logic.
- BUT possible in contextual logic, provided there does not exist any context containing both propositions.

### Zero covers of the configuration space



- $\{Z_1, Z_2\}$  is zero cover measure of  $\Omega$  if  $\mu(Z_1) = 0, \mu(Z_2) = 0$ and  $Z_1 \cup Z_2 = \Omega, \ Z_1 \cap Z_2 \neq \emptyset$
- Contrary inferences when two consistent sets are defined in Ω as:

$$\begin{split} C_1 &= \{Z_1, \bar{Z}_1\}, \quad \text{where} \quad \mu(Z_1) = 0, \mu(\bar{Z}_1) = 1, \\ C_2 &= \{Z_2, \bar{Z}_2\}, \quad \text{where} \quad \mu(Z_2) = 0, \mu(\bar{Z}_2) = 1 \end{split}$$

Z
<sub>1</sub> ∩ Z
<sub>2</sub> = Ø and Z
<sub>1</sub> ⊆ Z<sub>2</sub>, Z
<sub>2</sub> ⊆ Z<sub>1</sub> thus contrary propositions because e.g. μ(Z
<sub>1</sub>) = 1 and μ(Z<sub>2</sub>) = 0.

In consistent histories, every zero cover measure which contains two (coarse-grained) histories leads to contrary inferences (theorem).

### The arrival time problem in quantum theory

What is the probability to find the particle at the interval  $\Delta$  at any time t? instead, we will ask

What is the probability to find the particle at the interval  $\overline{\Delta}$  at a specific time t?

 $Q = \Delta \cup \overline{\Delta}$  $C_{\overline{\Delta}} = g_{\overline{\Delta}}(t, t_0), \quad g(t, t_0) = e^{iHt/\overline{h}}, \quad C_{\Delta} = g_{\Delta}(t, t_0)$  $g_{\overline{\Delta}} = |\psi_r(t)\rangle$  $p_{\overline{\Delta}} = D(\overline{\Delta}, \overline{\Delta}) = \langle \psi | \, \overline{P} \, | \psi \rangle$ ,  $\overline{P} = g_r^{\dagger}(t, t_0)g_r(t, t_0) \text{ and } H_r = \overline{P}H\overline{P} \text{ self-adjoint in } \mathcal{H}_{\overline{\Delta}} \text{ when quadratic in momenta}$ 

#### The arrival time problem in quantum theory

$$D(\Delta, \bar{\Delta}) = \langle \psi | C_{\Delta}^{\dagger} C_{\bar{\Delta}} | \psi \rangle \approx 0$$

This condition is satisfied when

- 1 boundary condition  $\langle x|\psi_0\rangle_{\partial\Delta} = 0$  (so that  $g_r(t,t_0) |\psi\rangle = |\psi_r(t)\rangle$ )
- 2  $\langle \psi(t) | \psi_r(t) \rangle = \langle \psi(t_0) | \bar{P} | \psi(t_0) \rangle = 1$

We will find two sets which satisfy the above conditions and show they are consistent.

## First consistent set



#### First consistent set

- Gaussian wave packet  $\Psi_G(x,0) = Ae^{-(x+L/2)^2/4\sigma^2}e^{ip_0(x+L/2)/\hbar}$
- Coarse-graining  $\Delta(t) = [-L+ut, 0+ut]$

• 
$$A = \frac{2\sqrt{5}}{\sqrt{\sqrt{2\pi}\operatorname{erf}\frac{5(L-2ut)}{\sqrt{2}}} + \sqrt{2\pi}\operatorname{erf}\frac{5(L+2ut)}{\sqrt{2}}}$$

• For every t, the overlap is  $\langle \Psi(x,t) | \Psi_r(x,t) \rangle \approx 1$ 

Thus, when we ask if the particle has passed to the positive axis, the answer is YES!

### Second consistent set



#### Second consistent set

• 
$$\Psi(x,0) = \frac{1}{\sqrt{\sigma\sqrt{2\pi}\operatorname{erf}(\frac{L}{2\sqrt{2\sigma}})}} e^{-(x+L/2)^2/4\sigma^2} e^{ip_0(x+L/2)/\hbar}$$

• 
$$\Psi_r(x,0) = \frac{1}{\sqrt{\sigma\sqrt{2\pi}\frac{1}{2}\left(\operatorname{erf}(\frac{L}{2\sqrt{2\sigma}}) + \operatorname{erf}(\frac{3L}{2\sqrt{2\sigma}})\right)}} e^{-(x+L/2)^2/4\sigma^2} e^{ip_0(x+L/2)/\hbar}$$

- $\langle \psi_r(t_0) | \psi(t_0) \rangle \approx 1$  because of the initial condition
- $\langle \psi_r(t_i) | \psi(t_i) \rangle \approx 1$

• 
$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n e^{-iE_n t/\hbar}$$

• 
$$u_n = \sin \frac{n\pi x}{L}, v_m = \sin \frac{m\pi(x+L)}{2L}$$

• Overlap

$$A(t) = \langle \Psi_r(x,t) | \Psi(x,t) \rangle = \sum_{n,m=1}^{\infty} (c_n^L)^* c_m^{2L} e^{iEt/\hbar(n^2 - m^2/4)} \int_{-L}^0 u_n(x) v_m(x) dx$$
$$= 1 - \epsilon(t)$$

• Classical limit ( $L = 2, p_0 = 1, m = 1, \overline{h} = 1, \sigma = L/10$ )

$$A(T_{rev} \approx 8) = 0,947 + 0,001i, |A(T_{rev})|^2 = 0,897$$

The answer to whether the particle passed the x = 0 is NO!

### Contrary inferences in the classical arrival time problem

**Histories** in the configuration space  $\Omega = \{h_1, h_2, h_3, h_4\}$ 

- $h_1 =$  paths which follow the particle
- $h_2 =$  paths which do not follow the particle
- $h_3$  = paths that remained in the negative axis all time from t = 0 till time t $h_4$  = paths that at some time within [0, t] crossed to the positive axis

**Consistent sets**  $C_1 = \{\{h_1\}, \{h_2\}\}, C_2 = \{\{h_3\}, \{h_4\}\}$ 

$$h_1 \subset h_4, \ h_1 \cup h_4 = \Omega, \ h_1 \cap h_4 \neq \emptyset$$
$$\mu(h_1) = 1, \ \mu(h_4) = 0$$

Thus there are contrary inferences!

### Discussion

- 1 Approximate decoherence
- 2 This problem exists even in quantum histories, even though it can be avoided.
- 3 At the classical limit it is more severe, since we cannot even make predictions for the semiclassical states, even when have already intuition.
- 4 CH without **selection criterion** cannot recover classical intuition in the classical limit.

# Bibliography

- P. Wallden, Contrary Inferences in Consistent Histories and a Set Selection Criterion, Found.Phys. 44 (2014) 1195–1215, [1402.3733].
- P. Wallden, Spacetime coarse grainings in the decoherent histories approach to quantum theory, Int.J. Theor. Phys. 47 (2008) 1512–1532, [gr-qc/0607072].
- A. Kent, Consistent Sets Yield Contrary Inferences in Quantum Theory, Phys. Rev. Lett. 78 (1997) 2874–2877, [gr-qc/9604012].
  - R. B. Griffiths and J. B. Hartle, Comment on 'Consistent sets yield contrary inferences in quantum theory', Phys. Rev. Lett. 81 (1998) 1981, [gr-qc/9710025].
- A. Kent, Consistent Sets and Contrary Inferences: Reply to Griffiths and Hartle, Phys. Rev. Lett. **81** (1998) 1982, [gr-qc/9808016].