
SKA LMC Common Framework workshop
Trieste, 25-27 Mar 2015

Lize van den Heever
Technical Lead: MeerKAT Control-And-Monitoring

KATCP & MeerKAT Overview

• KATCP = Karoo-Array-Telescope Communications Protocol
• Developed by SKA South Africa in the CASPER collaboration that developed the

Reconfigurable Open Architecture Computing Hardware (ROACH) board.boards
• Adopted by a few other projects using ROACH boards
• KATCP Protocol libraries for C, Python, Ruby (no Java)
• TCP/IP based communications
• Text-based, human-readable protocol; encoding of binary data is possible
• KATCP specifies a standardised protocol as well as behaviour (timeouts, replies,

logging)
• Synchronous (blocking) and asynchronous supported

• Control through KATCP request-reply pairs, sometimes request-informs-reply
• Supplemented by asynchronous informs for events
• Monitoring and reporting through KATCP sensors
• Logging and log-levels through KATCP informs

• Some standard messages and sensors defined in KATCP protocol specification
• Each project can defines appropriate common requests, informs and sensors as

required (e.g. alarms/events for SKA project)

• KATCP carries M&C data only, science data (bulk data) uses SPEAD

KATCP

• Standard requests: client-list, sensor-list, version-list, help,
halt, restart, watchdog, log-level, sensor-sampling, sensor-value

• Standard informs: sensor-status, log, client-connected, disconnect,
version-connect

• Standard MeerKAT sensors: device-status, heartbeat, sensors.ok, comms.ok
• Sensors: updates comprise: timestamp, sensor status, sensor value
• Standard requests, informs and sensors, specified in KATCP protocol,

is built into KATCP protocol library
• KATCP request/reply for control commands:

?set-x-limit 100
!set-x-limit ok

?log-level debug
!log-level ok debug

?sensor-value x-limit
#sensor-value 1427043978.954988 1 x-limit nominal 100
!sensor-value ok 1

• Asynchronous informs:
#log info 1427043900.4532 rscadmin.libkatcp rxl:rx_detected_and_on-line
#mode-changed STOP

#sensor-status 1427043968.954988 1 wind-speed nominal 6.563
#sensor-status 1427043978.394981 1 wind-speed nominal 6.140
#sensor-status 1427043988.941945 1 wind-speed nominal 5.966

KATCP Examples

Sensors for reporting and monitoring:
• Sensor update comprise: timestamp, sensor status, sensor value
• Sensor type :

integer, boolean, float, discrete, string, timestamp, address

• Sensor status:
unknown, nominal, warn, error, failure, unreachable, inactive

• Sampling strategies :
auto, none, period, event, differential, event-rate,
differential-rate

• Sensor examples
?sensor-list /wind/
#sensor-list wind-direction Wind_direction_angle deg float 0 360
#sensor-list wind-speed Wind_speed m/s float 0 70
!sensor-list ok 2

?sensor-value wind-speed
#sensor-value 1427043978.954988 1 wind-speed nominal 12.5
!sensor-value ok 1

?sensor-sampling wind-speed period 1
#sensor-status 1427101978.170049 1 wind-speed nominal 9
!sensor-sampling ok wind-speed period 1
#sensor-status 1427101988.701059 1 wind-speed nominal 9.1
#sensor-status 1427101998.134524 1 wind-speed nominal 9.65
...

?sensor-sampling wind-speed none
!sensor-sampling ok wind-speed none

KATCP Examples cont.

Supports introspection - ?help for requests/commands and ?sensor-list for sensors
•$telnet 10.8.67.53 4005

Connected to 10.8.67.53.
#version-connect katcp-protocol 5.0-IM
#version-connect katcp-library katcp-python-0.6.0a0
#version-connect katcp-device katsim-weather-test-0.1 katsim-weather-test-0.1

•?sensor-list (or ?sensor-list /wind/ for filtering)
#sensor-list device-status Overall_status_of_the_weather_system \@ discrete ok degraded fail
#sensor-list fmeca-FD0001-weather-acromag-ok Connection_to_weather_acromag_ok \@ boolean
#sensor-list input-comms-ok Input_module_comms_ok \@ boolean
#sensor-list pressure Barometic_pressure mbar float 600 1100
#sensor-list rainfall Rainfall mm float 0 500
#sensor-list relative-humidity Air_humidity percent float 0 100
#sensor-list temperature Air_temperature degC float -10 50
#sensor-list wind-direction Wind_direction_angle deg float 0 360
#sensor-list wind-speed Wind_speed m/s float 0 70
!sensor-list ok 9

•?help (or ?help simulate-value for filtering)
#help simulate-value Set the parameters for simulating the value of a sensor, and immediately

set the sensor to the average value.
The value wobbles randomly in the range (value - value_bound, value + value_bound).
Each time the value changes it moves no more than fluc_bound from the current value.
Parameters

sensorname : string

Name of the sensor to set the simulated value of.
avg_value : float

Average of the simulated value.
fluc_bound : float

Maximum distance value may move from its current value at each simulation step.
value_bound : float

Maximum distance value may be from the average value. ...
Examples: ?simulate-value air.pressure 900.0 1.0 50.0

KATCP Examples cont.

In MeerKAT the KATCP protocol is supported by KAT Comms Python libraries (katcorelib
and katuilib):
• Provide the interface and communication infrastructure necessary for binding

components of the system together, based on the configuration
• Components in system defined in templated configuration, supports any combination

of real and simulated devices
• Extend KATCP interrogation, support dynamic discovery and manage connections,

including auto-recovery (re-syncing introspected sensors and commands on re-
connection).

• It manages connectivity, reconnection, introspection – and presents a user-friendly
container with comms status, requests and sensors - auto-completion based on
introspected sensor and request descriptions

• Provide a container object, as per the configuration, containing each component, with
its requests and sensors as introspected on the line

• Provide usability layer, like filtering, formatting, colour coding, utility functions
• Provide aggregated control over groups of devices e.g. groups of antennas

commanded together
• Provide immediate low-level/manual control of any M&C interface based on

introspection of requests
• Provide detailed monitoring of any M&C interface based on introspection of sensors
• All CAM components uses the katcorelib comms library for internal communication,

monitoring and control

KAT Comms Libraries

KAT Comms Libraries examples
KAT container object built from configuration and introspection of KATCP interfaces
import katuilib; configure(); kat.status()
Client IP Port Status # Commands # Sensors Last Connected
=============== =============== ====== =============== ============ ============ ====================
anc 10.8.67.51 4001 synced 11 620 Mon Mar 23 09:06:23 mkat-ancillary-proxy
data_1 10.8.67.51 4003 synced 11 37 Mon Mar 23 09:06:24 mkat-data-proxy
data_2 10.8.67.51 4004 synced 11 37 Mon Mar 23 09:06:24 mkat-data-proxy
data_3 10.8.67.51 4005 synced 11 37 Mon Mar 23 09:06:23 mkat-data-proxy
data_4 10.8.67.51 4006 synced 11 37 Mon Mar 23 09:06:24 mkat-data-proxy
exe 10.8.67.52 2050 synced 8 6 Mon Mar 23 09:06:24 kat-executor
kataware 10.8.67.50 2110 synced 12 81 Mon Mar 23 09:06:24 kat-aware
katlogserver 10.8.67.50 8110 synced 11 6 Mon Mar 23 09:06:24 kat-log-server
katpool 10.8.67.50 2026 synced 13 25 Mon Mar 23 09:06:23 kat-pool
katstore 10.8.67.50 2090 synced 13 6 Mon Mar 23 09:06:24 kat-store
katstore_ar 10.8.67.54 2094 synced 8 7 Mon Mar 23 09:06:2 kat-store-archive
katstore_query 10.8.67.54 2095 synced 10 6 Mon Mar 23 09:06:24 kat-store-query
m000 10.8.67.51 4007 synced 11 606 Mon Mar 23 09:06:23 mkat-receptor-proxy
m001 10.8.67.51 4008 synced 11 606 Mon Mar 23 09:06:23 mkat-receptor-proxy
m062 10.8.67.51 4009 synced 11 606 Mon Mar 23 09:06:23 mkat-receptor-proxy
m063 10.8.67.51 4010 disconnected 11 606 Mon Mar 23 09:06:23 mkat-receptor-proxy
mon_obs 10.8.67.52 2080 synced 12 18 Mon Mar 23 09:06:23 kat-monitor
mon_proxy 10.8.67.51 2080 synced 12 138 Mon Mar 23 09:06:24 kat-monitor
mon_store 10.8.67.54 2080 synced 12 21 Mon Mar 23 09:06:24 kat-monitor
nm_flap 10.8.67.55 2000 synced 10 28 Mon Mar 23 09:06:24 node-manager-2.0
nm_monctl 10.8.67.50 2000 synced 10 172 Mon Mar 23 09:06:24 node-manager-2.0
nm_obs 10.8.67.52 2000 synced 10 36 Mon Mar 23 09:06:24 node-manager-2.0
nm_portal 10.8.67.56 2000 synced 10 44 Mon Mar 23 09:06:23 node-manager-2.0
nm_proxy 10.8.67.51 2000 synced 10 140 Mon Mar 23 09:06:24 node-manager-2.0
nm_sim 10.8.67.53 2000 synced 10 188 Mon Mar 23 09:06:23 node-manager-2.0
nm_store 10.8.67.54 2000 synced 10 52 Mon Mar 23 09:06:24 node-manager-2.0
sched 10.8.67.50 2060 synced 8 30 Mon Mar 23 09:06:24 katscheduler-1.0

Blue indicates a controlled component, Green a monitor-only component

• Detailed monitoring of all components in the container based on the sensor
introspection

KAT Comms Libraries cont.

In [10]: kat.m001.sensors.ap_<tab>
Display all 152 possibilities? (y or n)

kat.m000.sensor.ap_actual_azim kat.m000.sensor.ap_actual_azim_rate kat.m000.sensor.ap_actual_elev
kat.m000.sensor.ap_actual_elev_rate kat.m000.sensor.ap_requested_azim kat.m000.sensor.ap_requ
kat.m000.sensor.ap_build_state kat.m000.sensor.ap_local_time_synced kat.m000.sensor.ap_tiltmeter_read_e
kat.m000.sensor.ap_control kat.m000.sensor.ap_mode kat.m000.sensor.ap_on_source_t
kat.m000.sensor.ap_on_target kat.m000.sensor.ap_ped_door_open ...

In [5]: kat.m063.print_sensors("mode|control”, “period”, 1.0)
Print filtered sensors on m063 : mode|control : once : @ 09:07:01 |
Page 1 of 1 ack <N>ext Items:10 Per page:14 (+/-) Q to quit
------------------------------ Once off - values not updating ------------------------------------
Name Unit Status Value time Update time

ap.azim-aux1-mode-selected nominal 19:06:18.73 09:07:00.95 0
ap.azim-aux2-mode-selected nominal 19:06:18.73 09:07:00.95 0
ap.cb-sdc-recv-controller-closed nominal 19:06:18.73 09:07:00.96 1
ap.control nominal 19:06:18.73 09:07:00.96 remote
ap.mode nominal 22:04:45.37 09:07:00.96 stop
mode nominal 22:04:45.39 09:07:00.97 STOP
rsc.rxl.rfe2.temp-control.enabled boolean nominal 06:55:15.41 09:07:00.97 0
rsc.rxs.rfe2.temp-control.enabled boolean nominal 19:06:28.74 09:07:00.97 0
rsc.rxu.rfe2.temp-control.enabled boolean nominal 19:06:29.50 09:07:00.98 0
rsc.rxx.rfe2.temp-control.enabled boolean nominal 19:06:27.78 09:07:00.98 0

In [11]: kat.kataware.print_sensors("Wind")
Print filtered sensors on kataware : Wind : once : @ 09:08:33 |
Page 1 of 1 ack <N>ext Items:3 Per page:3 (+/-) Q to quit
------------------------------ Once off - values not updating ------------------------------------
Name Unit Status Value time Update time Value

alarm.ANC_Wind_Gust nominal 21:56:44.10 09:08:33.28 nominal,new,anc_gust_wi
value = '1...

alarm.ANC_Wind_Reporting_Failure nominal 19:08:04.10 09:08:33.28
nominal,cleared,agg anc wind reporting ok ...

• Aggregated control over groups of devices e.g.
kat.ants.req.mode("POINT")
equivalent to serially commanding the antennas with
kat.ant1.req.mode("POINT"), kat.ant2.req.mode("POINT"), ...

• Low-level / manual control of any M&C interface based on introspection of requests

KAT Comms Libraries cont.

In [09]: import katuilib; configure();
In [10]: kat.m001.req.ap_<tab>
cam.m001.req.ap_clear_track_stack cam.m001.req.ap_set_on_source_threshold
cam.m001.req.ap_star_track cam.m001.req.ap_enable_point_error_refracti
cam.m001.req.ap_maintenance cam.m001.req.ap_set_stow_time_period
cam.m001.req.ap_stop

cam.m001.req.ap_enable_point_error_systematic cam.m001.req.ap_rate
cam.m001.req.ap_set_weather_data

cam.m001.req.ap_stow
cam.m001.req.ap_enable_point_error_tiltmeter cam.m001.req.ap_reset_failures
cam.m001.req.ap_set_x_band_focus

cam.m001.req.ap_track cam.m001.req.ap_enable_warning_ho
cam.m001.req.ap_set_indexer_position cam.m001.req.ap_slew
cam.m001.req.ap_track_az_el …

In [11]: kat.m001.req.ap_track_az_el?
Type: KATRequest
String Form:<katcorelib.katcp_client.KATRequest object at 0x7f53fc36ea50>
File: /usr/local/lib/python2.7/dist-packages/katcorelib/katcp_client.py
Definition: cam.m001.req.ap_track_az_el(self, *args, **kwargs)
Docstring: Request the AP to set the antenna at the position specified by the
azimuth and elevation parameters at a specified time.
Parameters:
timestamp : KATCP Timestamp, The time when the position coordinates should be applied
azim : float, Azimuth coordinate (degrees)
elev : float, Elevation coordinate (degrees)
Returns:

• MeerKAT uses KATCP protocol and KAT comms libraries (katcorelib and katuilib) as the
communications middleware, also between components within MeerKAT Control-And-
Monitoring (CAM) subsystem

• MeerKAT CAM architecture evolved through XDM, Fringe-Finder, KAT-7 to MeerKAT
• Design decisions were made for SKA-Phase 1, with scalability to SKA-Phase 2 always in

mind
• MeerKAT CAM is fully configuration driven, including telescope specification and CAM

deployment
• MeerKAT CAM is designed to completely adapt to requests and sensors discovered

through introspection. Rolled-up sensors, aggregate sensor rules and alarm rules, GUI
status displays automatically include sensors discovered during introspection

• KAT container provides low-level control of all discovered requests
• MeerKAT CAM design is heavily based on sensor monitoring - setting sensor sampling

strategies and reacting to the updates, then commanding via KATCP requests to take
action

Terminology:
• MeerKAT CAM (Control-And-Monitoring) is the equivalent of SKA TM
• MeerKAT "devices" are equivalent of instances of Element LMCs
• MeerKAT CAM components are equivalent of instances of TM subelements

MeerKAT and KATCP

MeerKAT M&C "Framework"
(All these and more are described in par. 4. CAM concepts and design decisions of shared MeerKAT CAM Design
Description rev 2)

• KATCP device translators for all hardware devices/subsystems that are not delivered
with a KATCP interface (modbus, OPC/UA, SNMP, web-services, Ganglia metrics)

• Proxy layer (Leaf nodes in SKA-speak) for common control and monitoring of all
devices

• Hierarchical and distributed monitoring - Rolled-up sensors implemented on proxies
and nodemanagers, aggregate sensors per rules in configuration, distributed
katmonitors to gather and archive monitoring data, central kataware component
implements alarms management and actions as per alarms definition in configuration

• Standardised central logging - Device logging over KATCP. Proxies and Monitors
components, gather and store all KATCP logs centrally. Level of logging over the KATCP
interface is configurable via KATCP request. This provides a consistent mechanism and
formatting for system-wide logs and a central store of system logs to support fault
finding and engineering tests. The CAM subsystem provides a web interface for
viewing on-line system logs, which allows the log sources to be filtered and ordered on
user request.

• Homogeneous node (virtualised container) management, configuration driven
deployment

• CAM development with fully simulated system - through KATCP simulators, simulating
the KATCP interface and device behaviour. CAM system can be functionally exercised
and qualified in a fully simulated environment.

• Hierarchical monitoring:
- by defining on rolled-up sensors in proxies and nodemanagers
- averaging sensors for mean, max, min values across multiple similar sensors (e.g. for

mean wind speed, max wind gust), maths based, defined in configuration,
implemented by proxies

- aggregate sensors are rule based across multiple child sensors, defined in
configuration

- aggregate sensors implemented by katmonitors
- health & status displays, and alarms, mostly based on rule-based aggregate sensors

• Distributed monitoring through katmonitors
- a katmonitor on each node, gathers and archives all sensors exposed on that node
- any sensor introspected will automatically be gathered and archived and included in

rules to which it matches and in rolled-up sensors
- new nodes are simply added to the configuration and then are automatically

included in the system monitoring and archiving by defining an instance of
katmonitor for that node

• Telescope level monitoring and alarms management
- implemented by central kataware component
- rule-based alarm definitions (mostly on aggregate sensors) including alarm actions

and notifications, in configuration
- health & status displays, mostly based on rule-based aggregate sensors

• Central logging
- device logs gathered via KATP interface and exposed by proxies for central logging

MeerKAT Hierarchical & Distributed Monitoring

MeerKAT proxy layer
• KATCP device translators implemented for converting all protocols to KATCP (modbus,

OPC/UA, SNMP)
• MeerKAT proxies (leaf nodes in SKA.TM-speak) provide consistent layer for monitoring

and control of all device
Proxies protect access to lower-level devices/ element LMCs / hardware. All

engineering/support/system components/tools connect via the proxy layer and not
directly to hardware devices/subsystems.

• Proxies implement rolled-up sensors for all devices it manages, e.g. sensors.ok,
comms.ok, with sensor status (nominal, warn, error, etc), and rolled-up device-
status (ok, degraded, fail), indicating the worst status of the aggregation

• Proxies facilitate central logging of all device logs received on KATCP interface

MeerKAT Device M&C

Aggregate sensor rules examples:
{% for id in ants %}
[${id}:agg_${id}_no_wind_stow]
description = True if ${id} is not stowing
${id}_windstow_active = value == False
{% end %}

[sys:agg_sys_nodemanagers_ok]
description = True if all the node managers in the system are happy
{% for n in system_nodes %}sys.monitor.nm_${n} = value == True
{% end %}

[anc:agg_system_cooling_ok]
description = True if the KAPB cooling is OK
anc_bms_imminent_cooling_failure = value == False

[anc:agg_system_intrusion_ok]
description = True if there is no intrusion in the system
anc_bms_kapb_rfi_door_open = value == False
{% for id in ants %}
${id}_ap_ped_door_open = value == False
{% end %}

MeerKAT Telescope Aggregate sensors

Alarm rules examples:
{% for n in system_nodes %}
[${n} Disk Use]
numeric = True
sensor = anc.ganglia.${n}.kat.disk_part_max_used
strategy = period 60
warn = None, 75, 1
error = None, 85, 1
{% end %}

[System Cooling Failure]
numeric = False
sensor = agg_system_cooling_ok
strategy = period 1
delay = 60
critical = value == '0'
action = notify_sys
action_params = mkat-shutdown-kapb

[ANC Wind Speed]
numeric = True
#ANC implements this sensor giving 10-min mean wind speed over all wind sensors
sensor = anc.mean_wind_speed
strategy = period 1
#40 km/h = 11.1 m/s
critical = None, 11.1, 1.5
action = notify_sys
action_params = automated-windstow-antennas

MeerKAT Telescope Monitoring and Alarms

(The term “CAM node” is used for a virtualised container running any set of CAM processes.)

• Configuration driven deployment
- specify VMs/containers (called nodes) and their allocation to host servers
- specify processes to launch per node
- configuration centrally served from a head node to all nodes as required
- very easy to scale as the project grows and deploys more elements and/or

functionality: adding additional host servers, nodes and/or processes only needs
an update of the relevant configuration

• Deploy generic nodes
- each node has all CAM software deployed and could run any of the CAM
components
- each node initially runs only a single nodemanager service
- nodemanager waits for instructions from central system controller to register and
launch processes to run on that node
- central system controller coordinates launching of groups of registered processes
across nodemanagers, to facilitate sequenced start up and controlled shut down

• Nodemanagers:
- provides generic process monitoring (pids, running, mem and cpu usage, etc)
- provides generic process management (register/deregister, restart,
start/stop, kill)

- launches registered processes per groups as coordinated by system controller
- manages process output into a common file storage on each node

MeerKAT CAM Deployment

Pros:
• KATCP - protocol itself is light-weight, human-readable
• Extremely simple to use and lean
• Puts very little requirements on devices (TCP/IP stack) and protocol wrappers/drivers
• KATP - uses TCP/IP as the field bus
• KATCP library – provides server and client implementations, configurable multiple

connections and configurations, implements connection management and
introspection

• KATCP simulator framework exists, easy to build simulators for any KATCP interface
• Simple and lean implementation, nothing more and nothing less than what is

required, short learning curve, easy to use, adapt and expand
• katcorelib and katuilib comms libraries provides middle ware and rich usability layer
• MeerKAT CAM design is fully adaptive to introspection
• Modern technologies, implementation and software developement approaches
• MeerKAT architectural decisions were made with SKA phase 1, with potential

scalability for SKA phase 2, in mind
Cons:
• Not a framework per se: MeerKAT "Framework" = KATCP protocol + KAT comms

libraries + selected generic and central components
• Protocol does not implement security or authentication on the line – relies on

underlying network design
• Provides Python, C and Ruby protocol libraries, no JAVA, KAT comms libraries in

Python only

MeerKAT and KATCP - Pros & Cons

(FWP = Framework Protocol)

• It's a different decision to make, not a framework per se,
but if you wanted to maximise precursor re-use for risk reduction or schedule pressure

To leverage the precursor environment and support early integration, AIV and element LMC
interface validation:
• Create a KATCP <-> FWP translator (for general use and plug-and-play e.g. to wrap

simulators or existing MeerKAT components like weather stations)
• Adapt Proxy base (leaf nodes) to "talk" FWP
• Adapt the KAT comms libraries to "talk" FWP which will present the user with an SKA

container, as it currently presents KAT container

Benefits:
• This immediately provides an engineering interface to Element LMCs
• As well as a potential for a fully simulated SKA system based on Element ICDs
• It allows for any SKA Element to be integrated into MeerKAT system for early

integration and testing within the precursor system
• This can be done on a very short timescale (2-3 months)

MeerKAT and KATCP - Conclusion

– CASPER - https://casper.berkeley.edu/wiki/KATCP

– KATCP-Python - https://pypi.python.org/pypi/katcp

– MeerKAT CAM (Control-And-Monitoring) Design Documentation Pack, Dated:
12 August 2013
https://drive.google.com/drive/u/0/#folders/0B8fhAW5QnZQWNUVfa0l6SG5
SOXVMVXhRS3JsVXEwQQ/0B8fhAW5QnZQWdzdYdmlNTkhValE/0B8fhAW5Q
nZQWTmI5UWdRdkpoTWs

– KATCP Documents: KATCP Protocol Specification, Guidelines for
Communication with Devices Rev 5 and
KATCP_Device_Simulator_Requirement_Specification_Rev1. All of these in
LMC Shared google drive folder:
https://drive.google.com/open?id=0B8fhAW5QnZQWRzV0VjBLNUcwekk&aut
huser=0

Useful links

https://casper.berkeley.edu/wiki/KATCP
https://pypi.python.org/pypi/katcp
https://drive.google.com/drive/u/0/%23folders/0B8fhAW5QnZQWNUVfa0l6SG5SOXVMVXhRS3JsVXEwQQ/0B8fhAW5QnZQWdzdYdmlNTkhValE/0B8fhAW5QnZQWTmI5UWdRdkpoTWs
https://drive.google.com/open?id=0B8fhAW5QnZQWRzV0VjBLNUcwekk&authuser=0

Questions ?

	KATCP & MeerKAT Overview
	KATCP
	KATCP Examples
	KATCP Examples cont.
	KATCP Examples cont.
	KAT Comms Libraries
	KAT Comms Libraries examples
	KAT Comms Libraries cont.
	KAT Comms Libraries cont.
	MeerKAT and KATCP
	MeerKAT M&C "Framework"
	MeerKAT Hierarchical & Distributed Monitoring
	MeerKAT Device M&C
	MeerKAT Telescope Aggregate sensors
	MeerKAT Telescope Monitoring and Alarms
	MeerKAT CAM Deployment
	MeerKAT and KATCP - Pros & Cons
	MeerKAT and KATCP - Conclusion
	Useful links
	Diapositiva numero 20

