
The ALMA Common Software
Alessandro Caproni

Summary

• What is ACS

• ACS services

• Component-Container paradigm

• Development

• Deployment

• Run-time

End-To-End data flow

Scheduling

Scheduling

Blocks

Quicklook

Correlator

Telescope

Calibration

Control

Quality

Assurance

Phase I

Archive

Principal

Investigato

r

Operator/AoD

Phase II

Observing

Program

Science

Pipeline/C

ASA

ALMA – software and physical architecture

The observatory is a distributed system

• Servers and clients are distributed on different machines:

 Possibly in different locations

 With different purpose and functionality

 With different requirements on performance and reliability

• Servers and clients may use different:

 Hardware

 System software

 Programming languages

Requirements

 Developers of clients shall be unaware of the underlying server

architecture & vice-versa

 It shall be possible to change the architecture of a server

transparently to the client

 Client developers shall not even need to know whether a server is

local or remote.

The ALMA Common Software (ACS)

 ACS provides the basic services needed for object oriented distributed

computing. Among these:

 Transparent remote object invocation

 Object deployment and location based on a container/component model

 Distributed error and alarm handling

 Distributed logging

 Distributed events

 The ACS framework is based on CORBA and built on top of free CORBA

implementations.

ACS

 Operating system: RHEL 5.5 and 6.5 (32 and 64 bits)

 CentOS/SL 5 and 6 binary compatible

 Other linux versions supported by external projects

 Windows added also by external initiatives

 Real-time: RTAI

 VxWorks supported by and for APEX

 Languages: C++, Java, Python

 CORBA middleware: TAO (C++), JacORB (Java), Omniorb (Python), CORBA services.

 Embedded ACS Container: PC104, Debian, 300Mhz Geode, 256MB RAM, 256 MB flash

(CosyLAB microIOC), …

LGPL and free software

 Use as much as possible open-source tools, instead of implementing things.

 Do not reinvent the wheel

 Reuse experience of other projects

 Do not pay for licenses

 Support from user community

 Wrap with convenience and unifying APIs

 ACS is distributed under LGPL license

 Open source projects may have drawbacks

 Fast lifecycle and support only of the newest

 Free/commercial support

 Documentation not as good as commercial products

ACS services

• Naming service

• Interface Repository

• Notify Service*

• Logging Service

• Configuration database

• Alarm system

• Manager

ACS for developers

 Developers write components and graphical user interfaces clients in

C++, Java, or Python.

 ACS provides an integrated build environment based on application code

modules.

 Communication from an application to a component, and among

components, uses ACS as middleware.

 No thinking about starting and stopping components, or on which

machine they should run later.

 ACS keeps development, deployment and runtime separate

Container/Component

Components provide specific functionality to the

system. They are started and stopped by the

container, whom offers the component services

The container only cares about the lifecycle

interface of the components deployed on it

Container/Component interfaces

Functional Interface: observe, move, …

Lifecycle
Interface:
init, run,
shutdown

Container Service Interface:
• getName
• getLogger
• getComponent

Development - 1

 First step: Identify objects

 Mount

 Camera

 Telescope

 Second step: Define interfaces

 Implementation comes later and is independent of interface

 Deployment is also independent of interface definitions

 Interfaces shall be kept as stable as possible, but it must be possible to have

them evolve when needed.

 A formal interface definition language is needed

 Simulation

Development - 2

Development - 3

Deployment

Acs command center

Daemons

TMCDB

Services daemon

Container daemon

Services daemon

Container daemon

Services daemon

Container daemon

alma01 alma02 alma03

1

2

3

IR
CDB

…

NS
Manager

…

Alarm
Notify

…4
4 4

Runtime

Component activation

Component client

Object explorer

Characteristic component

 Executed within a container running on a given machine

 Container spawns threads for component execution

 Follows a component lifecycle

 A Component is the natural base class for physical and logical
“devices” (abstraction of hardware devices)

 With properties (e.g. staus value, position – control/monitor points)

 Characteristiscs i.e static data in the configuration database

 units, default values, monitor*, alarm*, archive*

BACI property

 Statically defined item

 It has a typed value and attributes
 Basi ctypes: double, long, string, pattern, enum, longSeq, …

 Read-only (RO) and read-write (RW) access

 Defines a interface, which is extended by developer
 Developer implements functions read() and write() functions

 Combines value(s) with “attributes”
 Description
 Unit
 Monitoring parameters
 Alarms thresholds

 Value monitoring
 Interval
 On change
 Keeps history (last 10 values)

 Value archiving
 Same as for monitoring

 Alarms built-in

DevIO

Bulkdata

ACS service for reliable and concurrent
streaming of high volumes of (astronomical) data
 Used in two configurations:
Many senders to one receiver
One sender to many receivers – multicast

Used by 6 ALMA SW sub-systems
In operation since March 2013
Total peak data rate: 64MBytes/sec

Bulkdata - 2

BL CDP master

BL CDP nodes: 1-16

0

High site -

AOS

Low site -

OSF

Total Power

Processor

ACA CDP master

30 km

ACA CDP nodes: 1-32

0

...

...

Telescope Calibratiom

Real-Time Filler

Archive

VSS VSS

Configuration database (CDB)

CDB browser

Logging system

Logging client (jlog)

Error system

ErrorTrace (TimeStamp=Thu Oct 31 20:45:04 2013,

FileDelayCal.py,

Line=579,

Routine=<module>,

Host=gns,

Process=14355,

Thread=MainThread,

Type=10, Code=3,

ShortDescrip=Unknown Error,

Severity=Error,

Data:)

ErrorTrace (TimeStamp=Thu Oct 31 20:45:04 2013,

File=ArrayMountControllerImpl.java,

Line=1987,

Routine=throwIfIllegalParameterError,

Host=gas01,

Process=CONTROL/ACC/javaContainer,

Thread=RequestProcessor-177,

Type=10000, Codee=2,

ShortDescrip=Illegal Parameter Error,

Severity=Error,

Data: Name=DV02,

…

Events

• Events distributed by means of Notification Channels

• NCs are an alternative to direct “Request/Reply” calls.

• NCs decouple the communicating partners

• NCs can protect the sender from slow receivers

• Notification Channels runs inside CORBA Notify Services

• Publisher/Subscriber mechanism
• ACS handle CORBA details of NCs

• Use of NCs makes debugging the system more difficult.

• Experimental NC over DDS

ALMA

Operator

(Java)

CAN bus devices (C++)

ALMA prototype antenna

at the ATF

Example Usage of

Telescope Events

Secured

Host for

CORBA

Notification

and Naming

Service
Pipeline

processes

(Python)

Observation

Scheduler

(Java)

Astronomer

Consuming

ALMA

Events as

They Occur

CORBA

Notification

Service

Running On

an

Unsecured

Server

Telescope

Calibration

(C++)

Event browser

Alarm System

The Alarm System is a messaging system that deals with abnormal
situations by means of Fault States (FS):

• FS collection

• FS analysis and distribution (reduction rules)

• Alarm definition

• Alarm archiving

ACS comes with 2 implementations:

• ACS (default)

• CERN (explicitly set in the CDB)

Alarms

• 4 alarm levels (low, medium, high, critical)

• ACS generates alarms from BACI properties

• 2 type of reduction rules
• NODE

• MULTIPLICITY

• API is very easy, just one line of code

ACS wrapper

LASER

CERN Alarm System

Client tier

Source tier

Business tier

Alarm panel Java clients

Components SimpleClient

C++, java, python

CDB

ARCHIVE

Alarm panel

Alarm profiler

Releases

• Incremental releases (~4 releases/year)

• Feature complete

• Improving robustness

• Tools to help debugging

• Open to community after testing at the OSF

ACS outside of ALMA

• APEX

• Cherenkov Telescope Array (CTA)

• Large Latin America Millimiter Array (LLAMA)

• Radiotelescope IGN Yebes

• Sardinia Radio Telescope (SRT)

• Sparta@ESO

Conclusion

• Cons
• Monolitic
• Steep learning curve
• Not yet complete
• Slow evolving

• Pros
• ACS is used in ALMA operations
• Other telescopes uses ACS as well
• Growing community (ACS@github)
• C++, python and java (other languages possible)

Questions?

Tight and porous interfaces

Functional

interface is

intercepted by

the container

for logging

and/or

exception

handling,

security, …

Container

manages

lifecycle and

offers

services, but

exposes the

component’s

functional

interface

directly – less

overhead

Container 1

Comp1

Comp2

MonitorCollector

Container 2

Comp1

Comp2

MonitorCollector

Container 4 Container 5

Blobber2

MonitorController

Blobber1

RDB

Container 3

Comp2

MonitorCollector

Monitoring - 1

C++ Container

Comp1

Prop1

Propn

Comp2

Propm

Prop1

MonitorCollector

CDB

1. register

<xml...

<Comp2

<Propm

2 read Comp2 xml

3 get values

Blobber2

MonitorController

4. register

Monitoring - 2

