Powerful quasar-feedback in local and very distant galaxies

Claudia Cicone University of Cambridge (Cavendish & Kavli)

Collaborators: R. Maiolino, S. Gallerani, R. Neri, A. Ferrara, E. Sturm, F. Fiore, C. Feruglio, E. Piconcelli, S. Veilleux, S. Aalto, J. Graciá-Carpio, R. Davies, J. Fischer, S. García-Burillo, E. González-Alfonso, S. Hailey-Dunsheath, N.Menci, H. Aussel

THE NEED FOR NEGATIVE FEEDBACK

Why are feedback mechanisms invoked to quench star formation in galaxies?

- Deficit of baryons in galaxies, especially at low and high M*
- What causes this deficit?
 - Negative feedback from star formation required to keep SF efficiency low in low-M_{*} galaxies
 - For more massive galaxies models invoke AGN feedback

QUASAR-MODE NEGATIVE FEEDBACK

[Gultekin+09]

"Red-and-dead" properties of local and z ~ 2 massive ellipticals **Coevolution** of stellar bulges and SMBH

QSO-mode feedback
Massive quasar-driven outflows

Part I

Massive molecular outflows in local (U)LIRGs

THE PROTOTYPE: MRK 231

Discovery of a massive molecular outflow affecting galaxy on kpc scales

2) Broad wings of CO(1-0) line, allow to map the outflow and measure size:

- Outflow radius ~ 1 kpc
- Outflow mass-loss rate estimate $M_{out} \sim 1000 M_{\odot}/yr = 5 \text{ times SFR}$ (outflow mass load factor $\eta = 5$)

[Feruglio+10, Cicone+12]

THE PROTOTYPE: MRK 231

[Cicone+12, Aalto+12, Cicone+, in prep]

Open questions:

- Are CN, HCN enhanced in the outflow because of **shocks**?
- Do CN, HCN really trace **dense cores** (n~10⁵ cm⁻³) in outflow?
- If so, how can such dense cores be accelerated to v~1000 km/s?
- Does dense gas instead condense in the outflow (i.e. positive feedback)?

IRAS F08572+3915

IRAM PdBI, CO(1-0) observations, [Cicone+14a]

IRAS F10565+2448

Massive molecular outflows seems **relatively common in (U)LIRGs** [<u>some</u> refs: Cicone+12,14a, Feruglio+10,13, Aalto+12, Alatalo+11, Garcia-Burillo+14 Combes+13, Sturm+11, Veilleux+13, Spoon+13]

A QUICK LOOK AT MODELS..

Blast-wave models...

Inner ultras-fast (v~0.1c) and highly ionized winds drive strong shocks into the ISM that sweep up ISM gas (large-scale outflow) [Lapi+05, Menci+06, King10, Zubovas+King10, Faucher-Giguere+12]

The outflow may be energy- or momentum- driven

 Cold dense clumps may cool out of the outflow (and eventually form stars?)
 [Zubovas+King13,Costa+14]

.. Or Radiation-pressure on dust

[Hopkins+Elvis10,Fabian12,Roth+12,Thompson+14]

 Starburst-dominated galaxies: outflow rate and SFR comparable (wind mass loading factor η~1)

 Outflow rates strongly
 "boosted" by the presence of an AGN (outflow boost increases with L_{AGN}/L_{bol} and up to factor of ~100)

[Cicone+14a]

 AGN luminosity correlates with outflow rate in AGN host galaxies -> AGN-driven outflows

Yet possible biases (upper envelope of a broader distribution?)

 "Pure" starbursts are outliers: different feedback mechanism

Coupling efficiency consistent with models and simulations of AGN feedback (~5%)

- Lower efficiency in LINERs: role of jets?
- "Pure" starburst upper limits are above 5%: additional mechanism (e.g. SNe)

Outflow momentum rate vs L_{AGN}/c

M_{OUT} v ~ 20 L_{AGN}/c Momentum boosts of ~20, as predicted by "blast-wave" models (energy-driven scenario)

Some sources show lower momentum-boosts (~5-10), which are also consistent with outflows driven by radiation-pressure on dust

Part II

Probing cold baryons in the halo of a bright quasar at z>6

Very extended cold gas, star formation and outflows in the halo of a bright quasar at z > 6

C. Cicone^{1, 2}, R. Maiolino^{1, 2}, S. Gallerani³, R. Neri⁴, A. Ferrara³, E. Sturm⁵, F. Fiore⁶, E. Piconcelli⁶, and C. Feruglio⁴

A&A in press (arXiv:1409.4418)

(1) First detection of [CII]158µm at high redshift

(1) First detection of [CII]158µm at high redshift

(2) A ~1.5 kpc size 'hyper starburst'

 Σ_{SFR} = 1000 M $_{\odot}$ yr⁻¹ kpc⁻²

i.e. comparable to nuclei(r <100 pc) of local ULIRGsbut on ~kpc scales!

[Walter+03,+04, Reichers+09]

[Walter+09]

(3) First detection of a <u>massive</u> quasar-driven outflow at z>6

[Maiolino+12]

v ~ 1300 km s⁻¹ size ~ 16 kpc \dot{M}_{OUT} > 3500 M $_{\odot}$ yr⁻¹ Depletion timescale < 10⁷ yr

(4) More surprises coming.. [Gallerani+14], [Cicone+14b, rest of the talk]

 Very extended [CII] emission, completely resolved-out by previous high-res observations by Walter et al. (2009)

[Cicone+14b]

- Very extended [CII] emission, completely resolved-out by previous high-res observations by Walter et al. (2009)
- What does this extended [CII] emission trace? Outflowing and/ or quiescent gas?

[Cicone+14b]

MAP OF THE HIGH VELOCITY [CII] WINGS

RESOLVED OUTFLOW PROPERTIES

Mass-loss rate, kinetic power and momentum rate vs dynamical time-scale

The outflow may have been in place for as long as ~ 100 Myr

- Ejection of gas has not occurred at a constant rate
- Bulk of the mass, energy and momentum released in the past 20 Myr

[Cicone+14b]

RESOLVED OUTFLOW PROPERTIES

Mass-loss rate, kinetic power and momentum rate vs radius

Overall decreasing trend as a function of R

These trends are qualitatively consistent with recent models of radiationpressure driven dusty shells (however we cannot exclude "blast wave" models)

[Cicone+14b]

THE [CII] NARROW EMISSION

scales > 20 kpc !!!! in a galaxy at z=6.4!!!! UV-plane modeling: almost 70% of narrow [CII] emission is extended (d~20 kpc) [Cicone+14b]

THE [CII] NARROW EMISSION

THE FIR EMISSION

ORIGIN OF THE EXTENDED [CII]

[Cicone+14b]

ORIGIN OF THE EXTENDED [CII]

THE EXTENDED [CII] NARROW EMISSION

Two possible scenarios to explain this <u>very</u> extended narrow [CII] component:

 PDRs associated with star formation on large scales (in a galaxy at z=6.4 !!!)

2) Diffuse atomic gas on very large scales excited by the central QSO and/or the nuclear SB, by low level in-situ SF (or by shocks!), tracing large masses (> $10^9 M_{\odot}$) of cold gas in the halo very little star forming (accreting?)

Not yet a definitive answer. But likely (1) for r < 10 kpc (where we also detect extended FIR continuum emission), and (2) dominating at r > 10 kpc

Conclusions

 $log(\tau_{dyn}$

(1) Massive molecular outflows
revealed by CO(1-0) (but also
OH, HCN, CN, HCO+)
observations of (U)LIRGs at z~0

 $log(\tau_{dyr}$

(3) Extended narrow [CII] tracing cold gas (and star formation?) on scales of r>10 kpc at z=6.4