Euclid: OU-SIR and the Spectra Reduction pipeline

Marco Fumana – IASF Milano on the behalf of OU-SIR people

IASF & spectroscopy

Instrument	Software	Project	Amount of spectra
VIMOS	VIPGI&EZ	VVDS	~35,000 spectra (Le Fèvre et al., 2005)
		zCosmos	~27,000 spectra (Lilly et al., 2009)
		VUDS	~10,000 spectra (Le Fèvre et al., 2016)
VIMOS	Easylife	VIPERS	~90,000 spectra (Scodeggio et al., 2018)
		VANDELS	~2000 spectra (Pentericci et al., 2018)
LUCI	Ireducer	LBT Italy	PI Programs
MODS	vreducer		
NISP-S	SIR pipeline	Euclid	~50,000 spectra per pointing ~30,000 pointings (OU-lead Scodeggio)

Software and validation of data products must be automatic

Euclid mission

- ESA mission, M size
- Wide survey: ~15,000 deg², $H_{AB} < 24$
- Deep survey: ~ 40 deg², H_{AB} < 26
- Investigate the nature of dark energy and dark matter
- Independent cosmological probes:
 - Weak gravitational lensing
 - Baryonic acoustic oscillations
 - Spectroscopic redshifts required: NISP-S

NISP-S instrument

- NISP-S: **slitless** spectrograph
- Wavelength range: 12500-18500 Å
- Redshift range: **0.9 < z < 1.8**
- Nominal linear dispersion: **13.4** Å / **pixel**
- FOV: ~0.55 deg² covered by a 4x4 detectors grid
- Observing sequence: 3 photometric exposures,
 1 spectroscopic exposure
- **4 spectroscopic exposures** for each pointing at 3 different grism orientations: 0, 90, 180, 90

Simulated full NISP-S FOV

Marco Fumana - OUSIR

13 Dec 2018 - IASF Milano

Main SIR data products

Inputs

- Level 1 raw exposures
- Catalog ($H_{AB} < 24$)

For each object collected into the input catalog, the SIR pipeline must produce

- 1D spectrum for each orientation
- 1D combined spectrum
- Both wavelength and flux calibrated

DP: quality requirements

All quality requirements (see GDPRD document) on 1D extracted spectra can be roughly summarized into

• Wavelength calibration accuracy: $\Delta z < 0.001 (1. + z) \qquad \sigma_{\lambda} < 1 \text{ pixel}$

- Flux calibration accuracy:
 - Accuracy on single exposure < 3.5%
 - Variations pointing to pointing < 0.7%

Wavelength calibration

13 Dec 2018 - IASF Milano

Spectra location

- Wavelength calibration depends on object positions
- Object positions are not measurable on dispersed images
- Pointing uncertainty: ± 5"

Oth orders location

0th order positions of:

- Bright stars
- Not saturated

Spectroscopic Frame

Pointing accuracy

Wavelength calibration

Conclusions & discussion

- SC3 data products: compliant with requirements
- Unfortunately: no improvements can be tested yet for SC456, since simulated data so far do not contain the need instrumental effects

- Lots of spectra with good wavelength and flux calibration (not useful for cosmological probes of the Euclid mission), extracted and available:
 - Local universe (Paschen lines)
 - Stars
 - Any use of 2D spectra?
 - Any other interesting scientific case?

Conclusions & discussion

- SC3 data products: compliant with requirements
- Unfortunately: no improvements can be tested yet for SC456, since simulated data so far do not contain the need instrumental effects

- Lots of spectra with good wavelength and flux calibration (not useful for cosmological probes of the Euclid mission), extracted and available:
 - Local universe (Paschen lines)
 - Stars
 - Any other interesting scientific case?
 - Any use of 2D spectra?