

http://www.mosaic-elt.eu

MOSAIC: a Multi Object Spectrograph for the ELT A gigantic step into the Deep Universe

L. Pentericci

on behalf of the MOSAIC team

Also: Heidelberg/Göttingen, Stockholm/Lund, Helsinki/Turku, Madrid Complutense/IAA, INAF Roma/Arcetri, Vienna, Lisboa/Porto Last newcomers: Geneva and Univ. of Michigan

PI: F. Hammer

Science & Technology Facilities Council UK Astronomy Technology Centre

Key science cases

There are eight key science cases (SC) for an ELT-MOS, which form the core cases for MOSAIC (White Paper Evans et al. 2015):

SC1: 'First light' – Spectroscopy of the most distant galaxies; SC2: Evolution of large-scale structures/IGM tomography/high-z clusters SC3: Mass assembly of galaxies through cosmic time/the role of dwarf galaxies

SC4: Active Galactic Nuclei-Galaxy co-evolution & AGN feedback;

SC5: Resolved stellar populations beyond the Local Group;

SC6: Galaxy archaeology;

SC7: Galactic Centre science;

SC8: Planet formation in different environments.

SC1: First galaxies and reionization

E-ELT & JWST VLT & HST

SC1: First galaxies and reionization

Most distant galaxies: MOSAIC will follow up JWST sources

Simulations of a Ly α emitter with EW=20A and J_{AB} =29 @z=9 with t_{int}=10 hours

Simulation of UV interstellar absorption lines for a J_{AB}=26 LBG @z=7

SC2: IGM tomography

Direct 3D reconstruction of the IGM (courtesy of Petitjean)

No QSOs but Lyman break galaxies observe<mark>d.</mark> with R≥ 5000

SC3: Mass assembly of galaxies

High definition mode: dark matter evolution from well-sampled rotation curves up to z=4

SC5: Resolved stellar population in external galaxies

MOSAIC spectroscopy of RedSuperGiants with the ELT will open-up a huge range of external galaxies for abundance studies. Galaxies with $\delta \le 20^\circ$, i.e. observable from Cerro Armazones at reasonable altitudes ($\ge 45^\circ$), are indicated by the closed symbols. MOAO + J band will reach RSGs to 30-35 Mpc.

Table 7: Summary of top-level requirements from each Science Case (with desirable reqs. in italics).

•	Case	Multiplex	FoV/target	Spatial sampling	λ-coverage (μm)	R
ų	SC1 First light	20-40	2"x2" *	40-90 mas	1.0-1.8 1.0-2.45	5,000
		≥150	-	(GLAO: 0.6''Ø)	1.0-1.8 <i>1.0-2.4</i> 5	>3,000
	SC2 Large-scale structures	≥10-15	2"x2"	(glao: IFU)	0.4-0.6 0.37-0.6	>3,000
		50-100	-	(GLAO)	0.6-1.8 0.6-2.45	>3,000
		>400		(GLAO)	0.4-1.4 0.37-1.4	>3,000
		≥10	2"x2"	50-80 mas	1.0-1.8 <i>1.0-2.45</i>	5,000
	SC3 Gal. evolution	≥100	-	(GLAO: 0.6''Ø)	1.0-1.7 0.8-2.45	≥5,000 ~10,000
		≥10	2"x2"	(GLAO: IFU)	0.385-0.7 <i>0.37-0.7</i>	5,000
	SC4 AGN	~10	-	< 100 mas	1.0-1.8	>3,000
	SC5 Extragal. stellar pops.	Dense	1"x1" 1.5"x1.5"	< 75 mas 20-40 mas	1.0-1.8 0.8-1.8	5,000
		10s arcmin ⁻²	-	(GLAO)	0.4-1.0	≥5,000 ≥ <i>10,000</i>
	SC6 Gal. archaeol.	10s arcmin ⁻²	-	(GLAO)	0.41-0.46 & 0.60-0.68 0.38-0.46 & 0.60-0.68	≥15,000 ≥20,000
	SC7 GC science	Dense	> 2"x2"	~100 mas	1.5-2.45	≥5,000 ≥10,000
	SC 8 Planet form	10s	_*	(GLAO)	0.5-0.6	≥20,00 <mark>0</mark>

From each science case the specific instrument requirements were collected (multiplex, FoV, spatial sampling, wav. coverage and resolutions

(see summary of science cases in the White paper Evans et al. 2015 and in Evans et al. 2016 SPIE)

Instrument operation concept

- Fibre-fed instrument
- Spectrographs are shared between modes

Modular concept

MOSAIC has been designed since the beginning to be highly modular, allowing for both potential descopes and phased deployment (from Morris et al. 2018 SPIE)

Spectral bands

MOSAIC

VIS bands

NIR bands

	λ _{min} (nm)	λ _{max} (nm)	R		λ _{min} (nm)	λ _{max} (nm)	R
Band 1 (BV)	450	600	5000	Band 1 (zY)	800	1060	5000
Band 2 (R)	557	743	5000	Band 2 (YJ)	1040	1378	5000
Band 3 (I)	686	914	5000				
Band Ha HR	627	688	15,000	Band 3 (H)	1358	1800	5000
Band CaT HR	840	885	15,000	Band 1 HR (H)	1520	1644	20,000

Spectral sampling: 4.2 pixels per resolution element

Spectral sampling: 3.1 pixels per resolution element

Lower cut in λ =450 nm due to mirror coating. No K band

Total throughput

Adaptive optics

limited observations

Ground Layer Adaptive Optics (GLAO)

- * Correction across the full wavelength range of the instrument
- # Expected performance at the blue-end (<6000Å) ~ seeing-</p>
- In NIR and over excellent seeing conditions, GLAO can potentially reach MOAO performance.

Multi Object Adaptive Optics (MOAO)

- # NIR (0.80 1.8μm)
- # High Definition mode only
- * Provide a 25% EE correction within 150 mas in the H-

band

MOSAIC at the end of Phase A

HMM-NIR: 160 fibre units (80 objects + 80 on sky)
HMM-VIS : 80 fibre units (no sky fiber)
HDM-NIR: 8 IFUS (1.9" across 80 mas spaxels)
VIFU: 4(8) IFUs (2.3" across, GLAO)

Estimated HW cost: 23 M€ (excluding 15% contingency and Pre-Focal station) Mass 29.5 Tons (at the limit of ESO allocation =30 tons) Overall goal has been to maximise parameter space

High Multiplex Modes (HMM)

Visible(HMM-VIS)

Near-IR (HMM-NIR)

Subfield

Number of apertures

Patrol Area

Operating bandwidth

Diameter of aperture on sky

Spectral resolution

AO performance

30+ 80	80+80 on sky
52.1 arcmin ²	47.3 arcmin ²
0.45- 0.9 µm	0.8-1.8 μm
840 mas	500 mas
5000 e 15000	5000 e 20000
GLAO (seeing limited)	GLAO

*Sub-fields are fragmented into 19 fibres, but should not be considered as being small integral field units.

HDM and VIFU modes

VIFU Visible IFU

Number of apertures	80+ 8	8
Patrol Area	44.2 arcmin ²	44.2 arcmin ²
Operating bandwidth	0.45- 0.9 μm	0.8-1.8 μm
Outer diameter on sky	2.31 arcsec (inner circle 2.0)	1.9 arcsec (inner circle 1.72)
Spectral resolution	5000 e 15000	5000 e 25000
Sampling	138 mas	80 mas
AO performance	GLAO (seeing limited)	MOAO

MOSAIC at the end of Phase A

Following Phase A there was an external panel of 11 experts who gave further assessment

- VIFU provides least added value
- Suggested push towards large multiplexing (min 200 ideally 500) Note that early decision in Phase A was to prioritize a wide field IFU (many science cases) vs higher multiplex (few cases)
- More resolving power in the visible is desirable \checkmark
- More simultaneous wavelength coverage is desirable in many cases
 - For the High Definition Model survey speed of HARMONI vs HDM-NIR needs to be re- assessed

ESO Pushes for a HMM-only instrument with higher multiplex

0

MOSAIC at the end of Phase A

HMM-NIR: 160 fibre units (80 objects + 80 on sky) • HMM-VIS : 80 fibre units HDM-NIR: 8 IFUS (1.9" across 80 mas spaxels) VIFU: 8 IFUS (2,3 " across, GLAO) ELIMINATED

Estimated HW cost: 21.5 M (excluding 15%) contingency and pre-Focal station) Overall goal has been to maximise parameter space

Ongoing re-assessment of HDM mode to be completed soon

MOSAIC at the end of Phase A

1. Finalize trade offs- multiplex depends on mass/volume/budget but keeping discovery space as large as possible MOS capabilities have already been limited (no mirror coating at <450nm, no K-band, no overlap with Harmoni pixel size) 2. Interfaces with the telescope still not clear: for Pre-Focal station ESO proposed half cost to be paid by each MOSAIC/HIRES consortia (answer no). Also weight is at the limit 3. Principle of contract with ESO: GTO against FTE (65 nights) =430 FTEs) and Hardware (60 nights =25 M \in). Possibility of Public surveys to be awarded instead of part of GTO with an incentive factor (e.g. for i=1.5 GTO 99 nights +PS 52 nights =151 nights) \rightarrow risk, no guarantee of success for consortium in public call

Italian participation (open list!) interests and and possible contribution

OATorino:

Daniele Gardiol, Davide Loreggia, Leonardo Corcione, Alessandro Sozzetti, Sebastiano Ligori -- IR detectors / Instrument control SW / data reduction

IASF Milano

Bianca Garilli,Marco Scodeggio,Paolo Franzetti,Marco Fumana,Dario Bottini,Mari Polletta -- s/w pipelines

OAArcetri

Anna Gallazzi, Stefano Zibetti, Sofia Randich,Laura Magrini,Germano Sacco,Lorenzo Morbidelli,Elena Pancino,Elena Franciosini -- science codes for spectral analysis for stellar parameters

OARoma

Laura Pentericci, Emanuele Giallong, Enzo Brocato, Fabrizio Fiore

Others

Marcella Longhetti, Angela Iovino Enrico Held Amata Mercurio Eros Vanzella

Ad-hoc Committee

The goal of the exercise was to get advices from the committee on few specific points, as detailed in the questions below. The methodology was first to collect written feedback from all the members of the panel, and then discuss them in a FTF meeting with the Steering Commette The 5 questions were:

- 1. how does MOSAIC compare to other 2020s facilities?
- 2. which one of the 4 additional architectures is preferred?
- 3. what are the missing MOS capabilities?,
- 4. is having a smaller pixel for the HDM desirable?
- 5. is the simultaneous spectral coverage adequate?

HDM vs HARMONI on extended sources z=4

Table 4: Survey speed comparison between MOSAIC and HARMONI at 1.65 μ m*.

	MOSAIC HDM	HARMONI <i>R</i> =3500	HARMONI <i>R</i> =7500
Spaxel scale [mas x mas]	80x80	30x60	30x60
R	5000	3500	7500
Multiplex	8 (10)	1	1
Dark current [e/s/pix]	0.0041	0.0041	0.0041
Read-out noise [e/pix]	3	3	3
Spectral sampling [pix]	5	3	3
Spatial sampling along X axis [pix]	2	4	4
Spatial sampling along Y axis [pix]	2	2	2
Ensquared Energy per spaxel [%]	35 %	45 %	45 %
S/N ratio (HARMONI / MOSAIC)		0.6	0.4
Survey speed HARMONI vs. MOSAIC		0.04 (0.03)	0.02 (0.01)
Survey speed H vs. M per IFU		0.3	0.1

*All ratios refer to HARMONI/MOSAIC. The resulting noise (sky background + read-out noise + dark current) and object flux ratios are estimated within one spaxel and for an element of spectral resolution, for an integration time DIT=600s (see Evans et al. 2016 for details and assumptions). We applied a linear correction in Ensquared Energy (EE) to the object flux ratio before estimating the resulting *S/N* ratio between MOSAIC and HARMONI to account for the better EE delivered by LTAO (HARMONI) compared to MOAO (MOSAIC). EE=45% per spaxel for the HARMONI LTAO (H band) was assumed (Dr B. Neichel., priv. comm.). The last line gives the survey speed ratio per IFU (i.e., assuming multiplex=1 for MOSAIC). Note that the same comparison in the *J*-band gives approx.. the same results (assuming EE=30% for LTAO vs. EE=24% for MOAO).

Cost of a GTO night according to ESO

ESO proposal:

Against FTEs: 65 GTO nights, cost (430 FTEs) 660k€/night (100k€/FTE) Against Hardware (incl. PFS): 60 GTO nights, 25M€ 420k€/night

Official value of one GTO night (ESO proposal to the Council):

- 300 k€ (2015) for an ESO member
- 600 k€ (2015) for a non-member

Accounting for possible Public Surveys that are not part of the GTO Call for Public Surveys are expected to be issued by a specific ESO Committee No guarantee for the Consortium to be successful Could we pay hardware cash knowing such a risk? If yes, which incentive factor could be applied to a Public Survey night (below 1.5?)

With factor i=1.5, cost of a Public Survey night is 280 k€, however taking the risk, additional FTEs & management

Example: with i=1.5 the Consortium could get 99 GTO nights + 52 nights for Surveys Note: ESO used i=1.25 that would have led to only 141 nights, instead

Preparation of MoU principles

Requires an accurate knowledge of survey/GTO ratios

For surveys that include GTO + ESO survey time, one would account similar reward rule for each partner (ESO or not)

Exchange between contributions (FTEs & budget) and participation to (1) a Survey Board; (2) different Surveys; (3) Publications.

Survey Board to be nominated by the Steering Committee

Chair of the Survey Board proposed by the PI (interactions)

Agreement on contributions per country

