

Connecting the dots: linking massive spheroids across cosmic time till catching their precursors with GT MOONS data

Paolo Saracco

Thanks to: Francesco La Barbera(1), Danilo Marchesini(2)

(1) INAF – OA Capodimonte
(2) Tufts University, MA, USA

The epochs of spheroids formation.

The bulk of stars of today's spheroids is thought to have formed in a short burst at early epochs, followed by a quiescent phase. If so, their progenitors should have physical and chemical properties similar to those observed today.

 $[\]tau_{\text{form}}$ shorter for larger masses.

Is the mass the true driver?

Thomas et al. 2010

Aims

- 1. Establishing the relationships between high-z spheroids $(1 \le z \le 2.3)$ with today's ones;
- 2. Establishing the link with their most likely precursors: star-forming galaxy not regularly shaped, dominated by stellar random motions (rather than angular momentum).

Tools

1. High-z vs local spheroids: comparison of physical and chemical stellar population properties (σ , Z, α /Fe, age);

Mg/Fe $\rightarrow \tau_{\text{form}}$ (duration of star formation; *e.g. Matteucci et al. 1994*)

2. Precursors *vs* high-z spheroids - Comparison of evolved (τ_{form}) stellar population properties of precursors given their SFR, their gas and stellar metallicity Z.

Can starburst galaxies (not regularly shaped, dominated by stellar random...) be the progenitors of high-z spheroids?

Toy model (no inflow/outflow, closed box)

Stellar age and metallicity at different redshifts Current spectroscopic measurements

- Onodera+15 (stacked spec. field galaxies $z \approx 1.6$)
- (1 field galaxy $z\simeq 2.1$) Kriek+16 *
- Morishita+18 (2 field lensed galaxies $z\simeq 2.1$)

GTC/LBT z=2 targeted spheroids *VLT-Xshooter archival data*

. . . .

Linking spheroids and their precursors with GT MOONS data

1.62 deg2 H(AB)<21 1.0<z<2.3 0.45

Expected numbers for one MOONS pointing (500 arcmin²) $S/N \ge 30$ per Å rest-frame $\rightarrow 10-15$ hr exp (survey Legacy)

 ≈ 250 gal (no preselection needed); ALMA CO(3-2) follow-up (subsample) \approx 50-60 spheroids (\approx 90 passive)

 ≈ 20 extreme starburst (progenitors ?)

Thank you!

The relationships between high-z and local spheroids.

Spheroids less affected by progenitor bias: once an high-density spheroid is formed, it is unlikely that it is disrupted or assembles efficiently a disc.

(Brooks & Christensen 2016 and ref. therein)

 τ_{form} shorter for larger masses

M~10¹¹ Msun $R_e=0.5$ kpc z=3.7age of the Universe 1.5 Gyr

Glazebrook et al. 2017, Nature

High-redshift spheroids are the progenitors of some of the local ones.

Stellar mass growth, stellar and gas enrichment. Toy model (unphysical, no inflow/outflow, closed box)

Lian et al. 2018

Kennicutt-Schmidt relation

Kennicutt 1998