

# Mapping the large-scale structure of the Universe with VIPERS and Euclid (Cosmology with Multi-Object Spectrographs)





# Cosmic Cartography

**Cosmological model Dark energy** Gravity **Early Universe** 

### Moments of the density field $\star$ Correlation function **The Power spectrum Higher order statistics The Redshift-space distortions**





160

1500

1400 150 Ben Granett

1300

1200

Massively multi-object spectroscopic surveys

The Cosmic web groups, clusters filaments voids

**Galaxy - dark matter connection Semi-analytic models** Halo occupation distribution

2300 PER300 2500 field 2200 (Granett) :/h]



### VIMOS Public Extragalactic Redshift Survey

- Headquarters in Milano (PI: Guzzo)  $\rightarrow$
- Strong international collaboration with ~ 70 scientists  $\rightarrow$ (Italy, France, Poland, UK, Japan)
- ESO large program  $\rightarrow$
- 90k spectra
- Redshift > 0.5 $\rightarrow$
- Ancillary data including X-ray, UV to IR  $\rightarrow$ plus galaxy shapes & morphologies
- Lensing sheer field over same area CFHTLens
- Data releases: vipers.inaf.it

**Ben Granett** 

# VIPERS

VLT at Paranal

25/09/02 VLT-VIMOS: 325 spectra at once VIsible Multi-Object Spectrograph (VIMOS) December 2018



# VIPERS Targeting



4

**Ben Granett** 



## **VIPERS** Photometric Selection

### Selection is optimized for the target redshift range (Scodeggio, Coupon, Guzzo)



Color pre-selection effectively targets galaxies at z>0.5

**Ben Granett** 





### tracing the cosmic web at z > 0.5as a function of galaxy properties









### Cosmic Web 1.0

0.9

. 54



1600

Company operation of

1700

1800

130

1900 2000 Comoving distance [Mpc/h]



# Tracking the growth of structure

- X
- The growth of structure with cosmic time is a sensitive probe of cosmology.
- Acceleration slows the rate of structure formation
  - Learn about dark energy and general relativity on cosmological scales

**Ben Granett** 







# Tracking the growth of structure



**Ben Granett** 





# Tracking the growth of structure





1.5

Redshift

**~**m

 $\square \Omega_m = 1$ 

2.0

 $\Omega_{\wedge} = 0.7$ 

0.3

0.0

0.5

1.0

Ŕ

2.5

![](_page_9_Picture_6.jpeg)

- $\star$  We must carefully control for galaxy bias to compare galaxy clustering at different redshifts.
  - Sub-halo abundance matching (SHAM) with N-body simulation predicts galaxy bias. (Multidark)
  - Rescaling simulations (Angulo & White 2010)

### Growth over 4 Gyr (z=0 to z=0.8)

![](_page_10_Figure_6.jpeg)

![](_page_10_Figure_9.jpeg)

![](_page_10_Picture_10.jpeg)

- Spectroscopic surveys map the 3D distribution of galaxies in redshift space.
- Line of sight distances are distorted due to peculiar velocities arising from:
  - Bulk flows
  - Random motions
- Measures the derivative of the growth  $\mathbf{X}$ factor (Kaiser)

 $d \log D$  $d\log a$ 

**Ben Granett** 

## Going to redshift space

![](_page_11_Picture_9.jpeg)

### Let's look at the distortions in VIPERS mocks.

![](_page_11_Picture_13.jpeg)

![](_page_11_Picture_14.jpeg)

## A distorted view

![](_page_12_Figure_1.jpeg)

Mock

### Galaxies ~6 billion years ago, observed today

![](_page_13_Picture_1.jpeg)

Mark Neyrinck (JHU/IAP)

## 0.5

# Two-point correlation function

![](_page_14_Picture_2.jpeg)

### Real space

## 1300

1400

1500

![](_page_14_Picture_7.jpeg)

### **Redshift space**

1600

Mock

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

## Growth of Structure

 $\star$  Peculiar velocities enhance modes along the line of sight through the Kaiser effect:

$$\delta_s(k) = \delta(k)(1 + \beta\mu^2)$$
$$\beta = \frac{f}{b} \qquad f = \frac{d\log D}{d\log a}$$

- The power spectrum is distorted:  $P(k,\mu) = (b + f\mu^2)^2 P_m(k)$
- The growth factor D(z) is determined by the gravity model and acceleration and may also depend on scale.

![](_page_15_Figure_7.jpeg)

### **VIPERS** blue galaxies Mohammad, Granett+18

![](_page_15_Figure_10.jpeg)

![](_page_15_Picture_11.jpeg)

### Multi-Tracer Analyses

![](_page_16_Figure_1.jpeg)

### $\star$ Red and blue galaxies trace the same density field, but with different clustering amplitude.

### **Density field reconstructed in VIPERS 0.6<z<0.8 (Granett)**

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

## Multiple Tracers and Systematics

![](_page_17_Figure_1.jpeg)

Blue galaxies tend to be central in low-mass dark matter halos Red galaxies live in massive halos with more satellites  $\mathbf{X}$ 

**Ben Granett** 

![](_page_17_Picture_6.jpeg)

## BAO & Complementary Probes of Acceleration

- $\bigstar$  The baryon acoustic oscillation (BAO) feature marks a fixed comoving scale.
  - The inverse distance ladder
  - Expansion history  $H(z)r_d$
  - Angular diameter distance  $D_M(z)/r_d$
- **★** Redshift-space distortions sourced by the growth of structure

![](_page_18_Figure_7.jpeg)

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

# VIPERS constraints

![](_page_19_Figure_1.jpeg)

**Ben Granett** 

![](_page_19_Picture_5.jpeg)

- $\bigstar$  Cosmic acceleration can be explained by a dark energy component or modification of General Relativity.
- $\bigstar$  Measurements of the expansion history alone cannot rule out modifications to GR.
- Growth of structure measurements break the degeneracy.

## <u>Complementary Probes of Acceleration</u>

![](_page_20_Figure_6.jpeg)

## <u>Complementarity of Surveys</u>

 $\star$  The CMB gave us the era of precision cosmology, but large-scale data enhances the science.

**★** Upcoming galaxy surveys will inform on the spectral tilt and primordial non-Gaussianity.

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_7.jpeg)

### Galaxy clustering can validate H0

- → The first acoustic peak on the CMB is sensitive to  $\Omega_{\rm m}h^3$  while galaxy clustering measures  $\Omega_{\rm m}h$ .
- The precision of future surveys can  $\rightarrow$ provide clues to the tension with local measures of the Hubble parameter.

## <u>Complementarity of Surveys</u>

![](_page_22_Figure_6.jpeg)

![](_page_22_Picture_9.jpeg)

![](_page_23_Figure_1.jpeg)

Granett (github.com/bengranett/specsurveys)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

## Spectroscopic Redshift Surveys

![](_page_24_Figure_1.jpeg)

Optical and near-IR spectroscopic surveys probe the luminous galaxy field: 0 < z < 4

Star formation peaked at z~2

Information content of LSS grows with volume.

**Future surveys** promise to mine these modes!

![](_page_24_Picture_8.jpeg)