

Study of young clusters at INAF in perspective of future multi-object spectrographs

> *KATIA BIAZZO* INAF – OACatania

collaborators Nisini, Antoniucci, Giannini (OARoma) Alcalá (OACapodimonte), Manara (ESO) Fedele, Randich, Sacco (OAArcetri) Frasca (OACatania) & the JEDI and GES teams







# THE CONTEXT

#### Study of the formation and evolution of young clusters

#### Main open issues:

□ What is the origin of clusters and their dissolution (e.g., Bravi et al. 2018, and ref therein)

- Is star formation a fast/dynamic process or slow contraction
- Disk accretion evolution as a function of mass and metallicity (e.g., Alcala et. al 2017; De Marchi et al. 2017, and ref therein)

## EXPERTISE

#### JEts and Disks @ INAF (JEDI)

- □ Star-forming regions in the solar vicinity
- Single-objects spectroscopy
- Medium/high resolution (X-shooter survey
  - + GIARPS science verification/pilot

programme)

☐ From near-UV to NIR



#### Gaia-ESO Survey (GES)

(talk by Germano Sacco)

- Young clusters at different ages and distances
- Multi-objects spectroscopy
- Medium/high resolution (Giraffe+UVES)
- Optical range



- Photospheric lines: Stellar Parameters, Veiling,
  Abundances, ...
- $\diamond$  UV-optical continuum excess emission: Accretion shock
- Excess (permitted) line emission (H, He, Ca, Fe, Ti, Na, ...):
  Accretion flows (+Winds) & Chromospheric Activity
- ♦ Forbidden lines ([FeII], [OI], [SII], ...): Jets (+Winds)
- NIR excess + Molecular lines (H<sub>2</sub>, CO, ...): Inner disk,
  Molecular Jets





### STELLAR PARAMETERS Characterizing young stellar objects





### DISK ACCRETION PARAMETERS Bimodal M<sub>acc</sub>-M<sub>\*</sub> relationship?





## **ELEMENTAL ABUNDANCES**



Shallower metallicity gradient at younger ages?

Spina, Randich et al. (2017) UVES+Giraffe [Fe/H]-R<sub>gal</sub>



To be confirmed observing other SFRs and YOCs at different distances

Science with multi-object spectrographs: perspectives and opportunities for the Italian community

| Similar results<br>were found by<br>B, Randich et al.<br>(2011a,2011b) | Cluster            | Age<br>(Mage) | R <b>gal</b><br>(kpc) | [Fe/H]<br>(dex) |
|------------------------------------------------------------------------|--------------------|---------------|-----------------------|-----------------|
|                                                                        | NGC 6530           | 1-2           | (ixpc)<br>6.50        | -0.04           |
|                                                                        | Carina             | 1-3           | 7.64                  | -0.03           |
|                                                                        | ρ Oph              | 2-3           | 7.88                  | -0.08           |
|                                                                        | Chamaeleon I       | 2-5           | 7.93                  | -0.07           |
|                                                                        | NGC 2264           | <b>1-3</b>    | 8.70                  | -0.06           |
|                                                                        | IC 4665            | 30            | 7.71                  | 0.00            |
|                                                                        | IC 2602            | 30            | 7.95                  | -0.02           |
|                                                                        | IC 2391            | 55            | 8.00                  | -0.03           |
|                                                                        | NGC 2547           | 35            | 8.04                  | -0.01           |
|                                                                        | <b>y Velorum</b>   | <b>10-20</b>  | 8.05                  | -0.03           |
|                                                                        | NGC 2451A          | 50-80         | 8.06                  | -0.05           |
|                                                                        | NGC 2451B          | 50            | 8.12                  | -0.01           |
|                                                                        | <b>Berkeley 81</b> | 860           | 5.49                  | 0.22            |
|                                                                        | NGC 6005           | 1200          | 6.00                  | 0.16            |
|                                                                        | Trumpler 23        | 800           | 6.25                  | 0.14            |
|                                                                        | NGC 6705           | 300           | 6.34                  | 0.08            |
|                                                                        | Pismis 18          | 1200          | 6.85                  | 0.11            |
|                                                                        | Trumpler 20        | 1500          | 6.86                  | 0.12            |
|                                                                        | Berkeley 44        | 2900          | 6.91                  | 0.18            |
|                                                                        | NGC 4815           | 570           | 6.94                  | -0.03           |
|                                                                        | NGC 6802           | 1000          | 6.96                  | 0.10            |
|                                                                        | NGC 6633           | 630           | 7.71                  | -0.06           |
|                                                                        | NGC 3532           | 300           | 7.85                  | -0.03           |
|                                                                        | NGC 2516           | 163           | 7.98                  | -0.08           |

Katia Biazzo

### **KINEMATICS AND DINAMICS Different velocity dispersion?**







## FUTURE PERSPECTIVES WITH MOONS

Thanks to the capabilities of **MOONS**, we aim to characterize very **low-mass YOs** (in **embedded clusters**) in terms of:

- □ kinematics
- □ stellar parameters (+abundances)
- □ accretion (+internal disk)
- □ chromospheric activity



- **CLUSTERS** properties
- □ Age (1-10 Myr)
- Distance (150-4500 pc)
- Dimension
- Density

Spitzer

SSWASS MASS

- □ Metallicity
- Number of sources
- Stellar mass



- □ ~40x40 arcmin<sup>2</sup> cluster in Perseus
- □ ~300 pc
- □ low-mass star formation
- □ ~2-3 Myr
- □ ideal for MOONS (nearby, rich)
- $\Box$  if  $H^{lim}_{AB}$  = 18.5 mag  $\rightarrow$  0.015 M<sub> $\odot$ </sub>
- □ 3000 sources  $\rightarrow$  1200 PMS candidates















## **CHROMOSPHERIC ACTIVITY AND LITHIUM**

