

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO DI ASTROFISICA E SCIENZA DELLO SPAZIO DI BOLOGNA



## Angela Bragaglia INAF-OAS Bologna

# WEAVE: STELLAR SURVEYS

Milano, Science with MOS spectrographs



# WEAVE consortium

#### WEAVE = WHT Enhanced Area Velocity Explorer





# **WEAVE Characteristics**

| Telescope, diameter                          | WHT, 4.2m                         |
|----------------------------------------------|-----------------------------------|
| Field of view                                | 2° Ø                              |
| Number of fibers                             | 960 (plate A)/940 (plate B)       |
| Fiber size                                   | 1.3″                              |
| Number of small IFUs, size                   | 20 x 11″x12″ (1.3″ spaxels)       |
| LIFU size                                    | 1.3′x1.5′ (2.6″ spaxels)          |
| Low-resolution mode resolution               | 5750 (3000–7500)                  |
| Low-resolution mode wavelength coverage (Å)  | · 3660–9590                       |
| High-resolution mode resolution              | 21000 (13000–25000)               |
| High-resolution mode wavelength coverage (Å) | 4040–4650, 4730–5450<br>5950–6850 |

Fibre-to-fibre minimum distance: 1 arcmin ( $\rightarrow$  problems with clusters)



# **WEAVE Characteristics**



Fibre-to-fibre minimum distance: 1 arcmin ( $\rightarrow$  problems with clusters)



## WEAVE performances





## WEAVE: Nothern multiplex



only X-wide field & X-high multiplex optical high-resolution in Northern Hemisphere (cf Maunakea Spectroscopic Explorer, 2025+)



## **WEAVE-Gaia connection**



- WEAVE (stellar) is the first survey with target selection from Gaia DR2+ and building on Gaia DR2+ results
- Gaia DR2 real catalog (real data quality, real target densities, etc) : evolution of target selection

> Gaia DR2 findings (e.g. Enceladus, new clusters) in target selection and footprint



# WEAVE timeline

- Complete survey plans: mid Q2/2019
- Survey readiness review: Q2/2019
- Early science project definition (first year of observations)
- Construction complete: Q3/2019
- Assembly and integration at WHT complete: Q4/2019
- First engineering light: Q1/2020
- First science light: Q2/2020
- Science verification begins: mid Q3/2020
- Surveys begin: begin Q3/2020
- 2019-2024: 5 years of WEAVE surveys (70% of available time), plus <u>TAC time (30%)</u> which may also include using WEAVE
- Post-2024: not defined, but likely continued use of WEAVE instrument (not necessarily current surveys)



# WEAVE mission for the Milky Way



Stellar orbits, star formation history, origin of the elements, Galaxy assembly,.... dark matter, cosmological initial conditions, fundamental physics, solar system(s)

(Figure for Gaia-ESO survey, see Gilmore, Randich et al. 2012, The Messenger, 147, 25)



# WEAVE mission for the MW

- Combine (spectroscopic) stellar parameters plus RV with Gaia PLX, PM, photometry: get ages, e.g. to constrain the mass assembly of the MW disc(s) with time
- Derive distances where errors on Gaia parallax are killing
- Chemo-dynamical labelling (tagging) with all main nucleosynthetic channels, to deconstruct galactic stellar populations



Gaia DR2 HRD: ~4.2 million low-extinction, well-behaved stars (Gaia Collaboration, Babusiaux et al. 2018)



# WEAVE stellar surveys

### Galactic Archaelogy (lead V. Hill)

complement Gaia

complement MOONS, 4MOST in North (& APOGEE)

- LRhighlat ; HRhighlat
- LRdisc ; HRdisc (also thick disc)
- Open Clusters (lead A.Vallenari)
- (Globular Clusters)
- (calibration)

### **SCIP** (lead J. Drew)

Galactic plane Stellar, Circumstellar, and Interstellar Physics

|b| < 4°; massive stars, ISM, YSO, SFRs

### > WD (lead B. Gaensicke)

10-20 per FoV at G=21 (LR) : flux/tellurics calibrators & science



# WEAVE stellar surveys

### Galactic Archaelogy (lead V. Hill)

complement Gaia complement MOONS, 4MOST in No

- LRhighlat ; HRhighlat
- LRdisc ; HRdisc (also thick disc)
- Open Clusters (lead A.Vallenari)
- (Globular Clusters)
- (calibration)

### > SCIP (lead J. Drew)

Galactic plane Stellar, Circumstellar, and Interstellar Physics

|b| < 4°; massive stars, ISM, YSO, SFRs

### > WD (lead B. Gaensicke)

10-20 per FoV at G=21 (LR) : flux/tellurics calibrators & science





## StellarCircumstellarInterstellarPhysics

(mostly) LR Survey on Galactic Plane, in synergy with GP surveys:
 b<4°; ugri+Hα, 20th mag VPHAS+ ESO; UVEX (ugr, some Hel) & IPHAS (riHα) North</li>



SCIP LR footprint, colored according to expected coverage in first Gaia release



## StellarCircumstellarInterstellarPhysics goals

Only in MW we can access individually examples of the less well-described and short-lived phases in stellar evolution, even for sub-solar mass objects and study at maximum resolution the relationship between stars and the interstellar medium. (LR) **spectroscopy** advantages over photometry alone: RVs (systemic, orbital); stellar parameters and metallicity, evidence of chemical peculiarity, IS absorption features, constraints on CS/nebular matter, mass transfer/loss, magnetic activity signature

- Study environmental effects on star formation
- Map extinction and ISM
- Study the life-cycles of massive stars
- Study mass-loss across HRD
- > Determine consequences of binary interaction
- Study cooling WDs
- > Study X-ray emitting binaries and gravitational wave sources

**Targets:** OBA stars (including emission line stars and RSGs), ionized nebulae and diffuse ISM, young stars, WDs and compact binaries, Cepheids



# MW surveys: some key questions

### Structure formation on sub-galactic scale

#### Halo: in situ vs accreted

- What is the total mass of the Milky Way? What is the shape of the Galactic gravitational potential?
- Where are the most metal-poor stars in the Milky Way, what are their properties, and what do they tell us about the physics of the early Universe?
- Solution of Association of Associatio of Association of Association of Association of Associa

#### Dark matter

- How much substructure does the Galactic dark matter distribution have within 20–50 kpc? How do they interact with cold streams?
- Discs: respective roles of hierarchical formation and secular evolution in shaping the Galaxy
  - what are the roles of spirals (+ number of arms, pitch angle, pattern speed?) and the bar (length, pattern speed?)
  - > How do clusters form and dissolve, populating the MW ?
  - > what is the chemical evolution traced by the open clusters?



# Gaia DR2 "surprises" - halo



- Gaia+SDSS data: "Gaia Sausage" contributing to 50% mass of the halo within 25 kpc (Belokurov+2018, Lancaster+2018, Kruijssen+2018)
- Gaia-Enceladus retrograde stars are on the blue sequence (Helmi+2018)
- Inner 30 kpc the stellar halo could be largely dominated by a single, ancient, extremely radial merger 10 Gyr ago, of high mass (10  $^{9-10}$  M $_{\odot}$ )
- $\sim$  [ $\alpha$ /Fe] vs [Fe/H] different from thick disk: long lasting SF
- High e stars with abundances of dwarf satellites (Mackereth+2018, using APOGEE)



# Gaia DR2 "surprises" - disk



The disk is out of equilibrium state (Antoja+ 2018; Kawata+ 2018; Trick+ 2018)

Bending modes excited by dark matter halo ? (Chesquers 2018)

- Vertical waves from a perturbing satellite (Sagittarius ?) ? (Binney & Schoenrich 2018, Bland-Hawthorn+ 2018)
- Perturbations created by spiral arms ? (Hunt+ 2018, Quillen+ 2018)
- Bar perturbations ? (Gaia Collaoration+ 2018)



### A few million stars to unravel MW history



LR disk: |b|<6 1.5x10<sup>6</sup> stars – on 210+405 LoS HR disk: 1,800 deg<sup>2</sup> with 15<|b|<30 to ensure coverage of discs



# WEAVE Galactic Archaelogy plan





# GA : LR high latitude

- Goal 1. Formation scenarios for the Galactic stellar halo: in-situ or accreted? Dist=10-35 kpc to trace the break of the halo
- **Goal 2**. Outer halo survey with RGB stars
- **Goal 3.** Total mass of the Milky Way out to 200 kpc through Jeans analysis
- Goal 4. The shape of the Galactic gravitational potential within 50–100 kpc from tidal streams. Dist
  > 50 Kpc
- **Goal 5.** Chemo-dynamics of Milky Way dwarf satellite galaxies
- **Goal 6.** Halo sub-structure. Dist < 30 Kpc
- **Goal 7**. Metal-poor stars and the earliest phases of metal-enrichment.
- > Goal 8. Large scale mass assembly of the thick disc

 $|b|>30^{\circ}$ , V<20 + color cuts,  $\sim 1-2\times 10^{6}$  stars (number of streams > 30) Tracers : old MSTO (D<30 kpc) ; RGB (100 kpc) ; BHB & RRLyr ; EMPS (MoU with PRISTINE)

#### **Pointed survey** :

dwarf galaxies + streams + UDFs to V<21

(also repeated observations to get binaries with |dRV| > 2 km/s)



# GA : LR disc

A galactic plane experiment to constrain the disc potential, including departures from axisymetry (spiral arms, bar, ...), moving groups, study of accretion events, study of radial migration, etc

|b|< 6°, 550 LOS, RV to 2 km/s to discriminate streams with 5-10 km/s</li>
 WEAVE Privileged access to outer disc (clearly not in equilibrium): also HR, |b|< 10°</li>
 Tracers: RGB and red clump stars





# WEAVE HR surveys

- Goal 1. Probing the assembly of the Galactic discs with chemical labelling and ages
- Goal 2. Chemical labelling of streams, groups and substructures in the Galactic halo
- > Goal 3. History of the chemical enrichment in the Galactic disc
- **Goal 4.** Stellar clusters (*GA-OC sub-survey already organized*)



# WEAVE HR surveys : halo & disc(s)

### Goal: Chemical tagging

> High latitude Halo: searching for streams + first stars

Assuming 500 streams cross the solar neighbourhood & 100 members each needed to characterize them

#### $\rightarrow$ 5x10 <sup>4</sup> halo star $\rightarrow$ target 5 x10 <sup>5</sup> stars

Given the density of halo stars at magnitudes 12<V<16 (~10 /deg<sup>2</sup>)

### $\rightarrow$ high-latitude survey 5000 deg<sup>2</sup> (at |b|>30-40)

#### Intermediate latitude survey mapping the thick disk

MSTO stars selected from Gaia

Assuming 0.1 dex thin/disk separation, an error on [ $\alpha$ /Fe] abundances of 0.05 dex Nmin=3,000 stars per (R<sub>GC</sub>, [Fe/H], Z) box

### $\rightarrow$ 1800 deg<sup>2</sup> with 15<|b|<30° to insure R<sub>GC</sub>,Z coverage

### $\rightarrow$ 6x10<sup>6</sup> thick disc stars

> HR (+LR) Globulars



# WEAVE HR surveys : halo & disc(s)

- 90% of the HR survey is within the GDR2 5-D sample
- Target selection: G<16 including Gaia parallaxes (G<17 anticenter)</p>
- $\succ$  Giants: all stars with M<sub>G</sub> < 1.5
- $\succ$  MS: all stars 1.5<M<sub>G</sub><4.5





# **GA - Open Clusters**

- > Goal 1. Formation of open clusters and associations  $\rightarrow$  FGK stars in Cygnus
- **Goal 2.** Disruption of open clusters
  - > chemical tagging of young clusters in the field
  - > Chemical tagging of the halo of open clusters
- ► Goal 3. OCs as tracers of the Galactic disc and of its chemical evolution → old OCs (age >500 Myr)
- > As tracers of disk perturbations
- > Goal 4. Early stellar evolution  $\rightarrow$  nearby OCs
  - lithium (nuclear ages, mixing, etc)
  - > accretion, activity: evolution and effect of environment
  - > Expansion vs contraction
- Goal 5. Stellar evolution at later stages
  - > Stellar population, binary confirmation, PMS

In red : science case/target selection revision based on Gaia DR2 data

Italy : INAF Padova, Bologna, Catania, Arcetri (+ Barcelona, Bordeaux)



## Updates in the Open Clusters census





## Updates in the Open Clusters census





## Updates in Open Clusters parameters



Gaia DR2 PLX, PM revision for 1200 Ocs PLX uncertainty: 84% <5% ; 94% <10%

Bayesian age determination (BASE9) for 270 OCs



# Data policy

- > Open data access inside the Consortium for all "nominal" products
- > Proprietary period of 1 year for additional data products (CDPs)
- > First public data release after 2 years from survey beginning
- > Then every year
- > PI-projects with WEAVE are analysed by the WEAVE pipeline

