

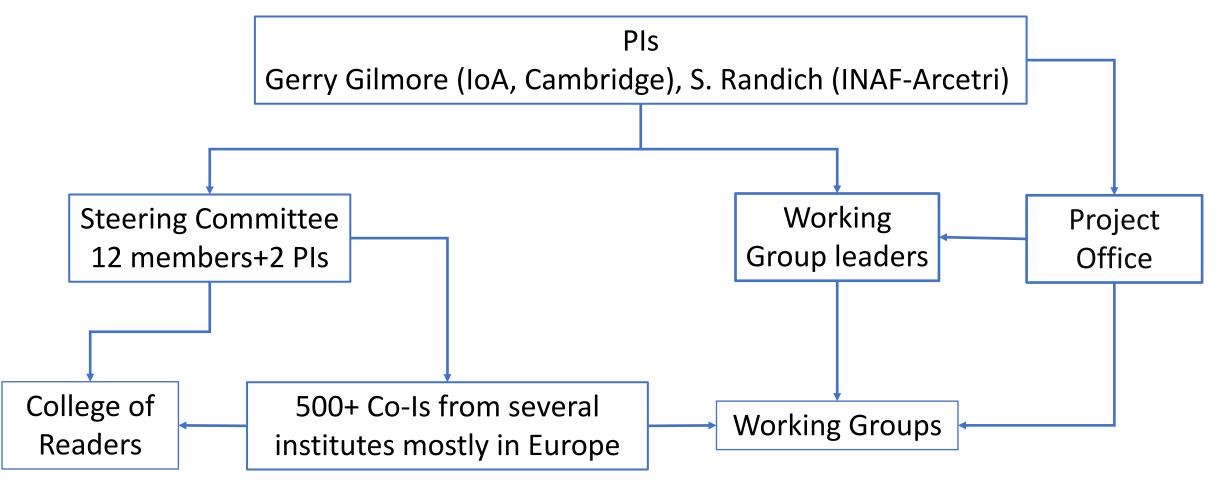
The Gaia-ESO Survey

INAF-OSSERVATORIO ASTROFISICO DI ARCETRI

G.G. Sacco

Large ESO public spectroscopic survey of 10⁵ galactic stars in the MW field and in open clusters

Gaia		6D phase space
+	=	Stellar parameters
Gaia-ESO		Chemistry


Scientific drivers:

- The dynamical evolution of star clusters
- All phases of stellar evolution
- The formation and evolution of the Galactic disc
- Properties and origin of the Bulge and the Halo

(see Gilmore et al. 2012, Randich & Gilmore 2013)

The Gaia-ESO Consortium

The INAF Contribution

Manpower and Managment

Institutes with major involvment: OAA, OABO, OACT, OAPA, OAPD

Managment roles: co-PI (S. Randich), members of steering committee (G. Micela, A. Vallenari), WG leadears (A. Bragaglia, E. Flaccomio, A. Lanzafame, E. Pancino)

People with key roles in target selection, data reduction and data analysis: K. Biazzo, F. Damiani, E. Franciosini, A. Frasca, L. Magrini, L. Morbidelli, L. Prisinzano, G. Sacco + postdocs and PhD students

Several co-Is with minor involvment

Scientific exploitation

29 papers (37 % of the papers from the GES consortium) led by INAF author

Financial contributions

PREMIALE VLT 2012 (P.I. S. Randich) PRIN INAF 2014 (P.I. S.Randich)

Mostly used to fund postdocs involved in the target selection and data processing

<u>Meetings</u>

- All hands science workshop in Catania
- Science meeting on young clusters in Palermo
- Two technical meetings on data processing in Firenze

Only regret

Not having our own data archive!

Observations and Status

Targets:

- Field stars in the disc, halo and Bulge
- Open clusters of all ages
- Large sample of calibrators

╋

Re-processing and Re-analysis of a large sample of archival data

Observations

- Period: 12/2011-01/2018
- Nights: 340
- Mode: Visitors

Instrument: FLAMES at VLT

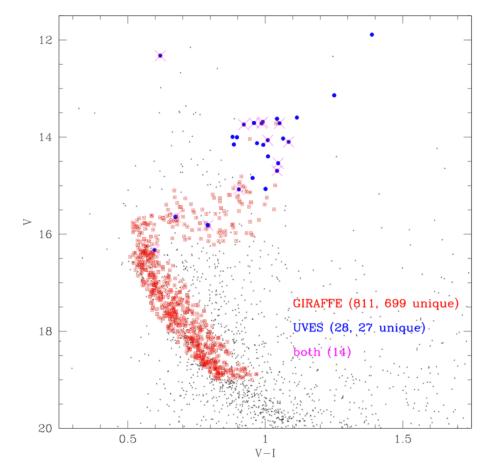
- GIRAFFE (R=16,000-25,000)
 - ✓ Targets: 10⁵ (V< 19 mag)
 - ✓ Setups: HR10/15/21 (Cool Stars) HR3/5a/6/9B/14 (O/B/A)
- UVES (R =47,000)
 - ✓ Targets: 8000
 - ✓ Setups: 520, 580

<u>Status</u>

- Observations completed on January 2018
- Five Internal data releases
- Three public data releases
- Last internal release will be completed in March

Target selection: Open clusters

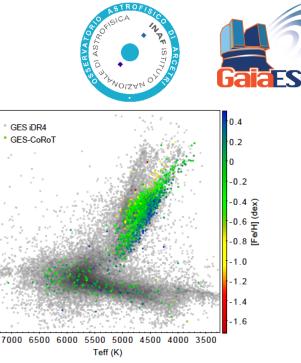
Cluster Sample


- Number: 62
- Age: 1-8000 Myr
- Galactocentric radius: 5.5-9.0 kpc
- Number of Stars: 200-2000
- Spectral types: from M to O

Target Selection

- Giraffe
 - Strategy to obtain a sample as much as possible complete and unbias
 - Based on Photometry
- UVES
 - Strategy to obtain a sample of cluster members suitable for chemical analysis
 - Based on spectroscopy and photometry

NGC 2243


GES iDR4 GES-CoRo 5500 5000 Teff (K) GES iDR4 calibrating GC star 660 7000 6000 5000 Teff (K) (From Pancino et al. 2017)

Target Selection: Calibrators

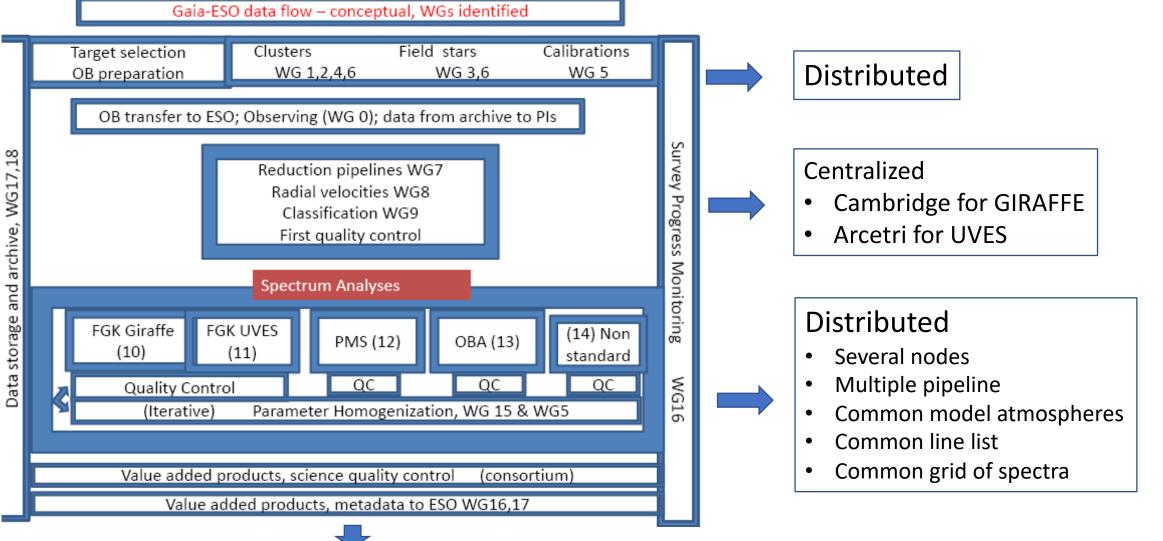
Goals

- Internal calibration of the survey 1
- **Cross-Calibration with Gaia** 2.
- Cross-Calibration with other surveys 3.

- (Gaia) RV Standars ۲
- (Gaia) Benchmark stars ۲
- Astereosimologic benchmarks from COROT and Kepler •
- Very well know Globular and Open clusters •

-0.5

-1.0


-1.5

-2.0

4000

The data analysis workflow

Science Archive at RoE

<u>Successes</u>

- 1. Capability to analyse spectra covering large ranges of temperatures, gravities and metallicities;
- 2. Capability to derive a wide range of astrophysical parameters;
- 3. Better understanding of systematics in data analysis;
- 4. Development of new tools for data analysis;

lssues

- 1. Long data analysis cycle with a high chances of delays
- 2. Simple errors propagate through the workflow and are difficult to address

Solutions

- 1. Robust managment structure (project office, wikipage, meetings)
- 2. Strict rules on data format and documentation
- 3. Independent quality control

Implementing these solutions require manpower and time

Scientific exploitaition: Bottom-up approach

All Co-Is have access to the full dataset of homogenized parameters and are free to publish on any topic. They have to share their project and post their paper before pubblication on a wikipage, follow some rules about authorship and the use of data.

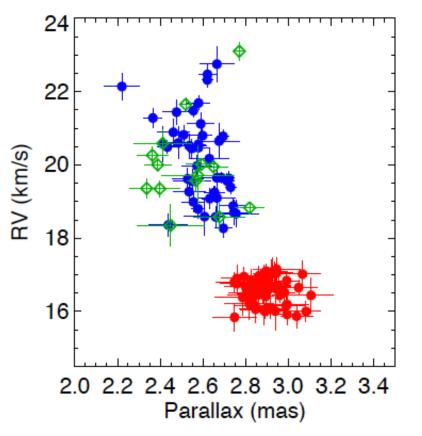
SUCCESSES

- 1. Several papers covering a wide range of topics
- 2. Several papers lead by PhD students and postdocs
- 3. Several CO-Is were stimulated to develop new tools for the analysis

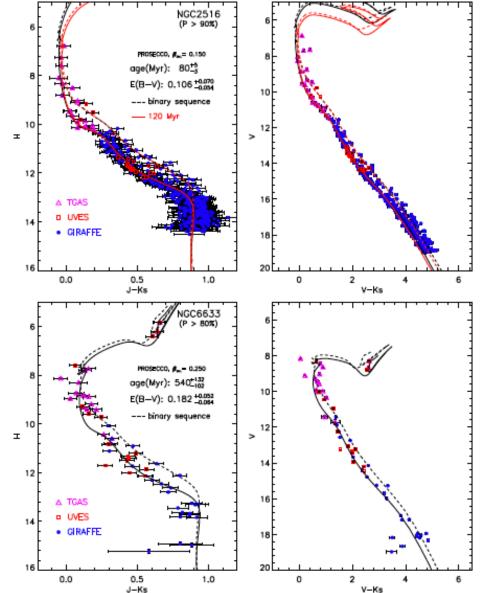
What could have been done better

- 1. Stricter rules about how to share projects on the wikipage
- 2. Key projects driven by the steering committee

ISSUES


- 1. Publications somewhat fragmented (e.g. Papers focusing on the properties of one cluster)
- 2. Some overlap among differnt papers

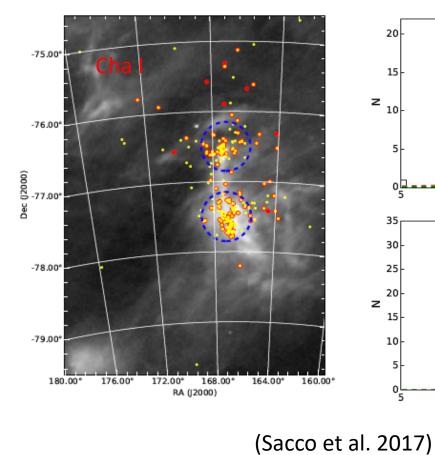
Selected scientific results: cluster dynamics

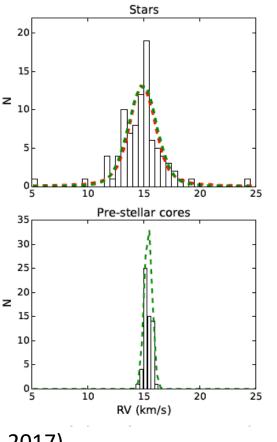


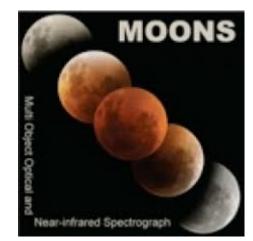
Kinematic study of young star clusters revealed a structure more complex than previously thought

Franciosini et al. (2014)

Selected scientific results: OC as age calibrators




Using GES + Gaia data to place open clusters on the same age scale


(Randich et al. 2018)

The future: dynamics of embedded star clusters with MOONS

MOONS will be able to:

- 1. Studying the dynamics of embedded objects
- 2. Going to lower mass

See Katia Biazzo Talk!