Astrometric Gravitation Probe (AGP)

Riva, A., on the behalf of AGP team

Rome, Nov 20th 2018

Final message

 Let's enhance the "sparse pupil" technique research activities

Overview

- AGP Mission
- Science goals
- Scientific requirements
- Measurement principles
- Instrument design
- Performances

What's AGP?

AGP: Astrometric Gravitation Probe

Astrometry = measurement of apparent star position

Gravitation = Tests in weak field (solar system)

- 1) Light deflection close to the Sun
- 2) High precision dynamics in Solar System

Probe = Medium size space mission

Mission design driver: Light bending around the Sun @ sub-µas level

Proposed in ESA M4 call and 2015 Call for Ideas

AGP concept: Dyson-Eddington-Davidson experiment (1919)

A space mission in the visible range to achieve

- long permanent artificial eclipses
- no atmospheric disturbances, low noise

Differential measurement for systematic error control

AGP Mission Profile

Baseline launcher: Vega Sun-Synchronous orbit (SSO, i=99.48°), elevation: 1000 (1500) km Useful mass (satellite + payload): 1140 (1000) kg Spacecraft dry mass (incl. payload and propulsion systems) ~ 800 kg Payload mass ~ 300 kg 3-5 years In-orbit operations 16' x 16' fields of view Effective Focal Length ~ 25 m 1.15 m Telescope primary diameter: 1.10 m Effective Fizeau pupil diameter: lightweight mirror zerodur or SiC Payload envelope: 2.1 m diameter x 1.5 m height CCD mosaic @ -20 C **Detector:** 8 x 4 CCDs - 2kx4k Main science focal plane: 1 x 2 CCDs - 2kx4k Auxiliary (pointing) focal plane:

AGP Science goals

Characterisation of weak field gravity in the Solar System

- \succ Deflection of light in the solar system
- > Non-linearity of gravity, preferred frame
- Relativistic effects of oblate and moving giant planets
- Solar system dynamics [High precision ephemerides]

AGP Science goals

Characterisation of weak field gravity in the Solar System

- > Deflection of light in the solar system
- Non-linearity of gravity, preferred frame
- Relativistic effects of oblate and moving giant planets
- Solar system dynamics [High precision ephemerides]
- Detection of dilaton
- Limits on Lorentz invariance
- Preferred frame detection
- Anisotropy of light deflection
- Test of Equivalence Principle

Exclusion / validation of alternative theories of gravity

> Crosta and Mignard, 2006 Colladay, Kostelecký, 1998 Kostelecký, 2004 Kostelecký, Russell,2014 A. Hees et all., 2015

Science goals summary

AGP scientific requirements driven by light deflection case

AGP scientific requirements driven by light deflection case

Complementary GR tests:

Measurement precision required: \rightarrow Final collective accuracy (α, δ) : 0.1 to 0.01 µas 1 µas (α, δ) for Mercury \rightarrow Individual precision: σ_{star} ~ 100 to 10 µas

Fully differential measurement

Measurement of angular separation of stars between fields

Fully differential measurement

Measurement of angular separation of stars between fields Different collective effects on field images from

- instrument evolution (focal length, distortion)
- deflection (field displacement)

 \Rightarrow simple calibration of MULTIPLICATIVE terms

Principle

AGP Observation Strategy

Multiple field telescope on Helio-synchronous orbit @ h=1000 km

AGP Observation Strategy

Multiple field telescope on Helio-synchronous orbit @ h=1000 km

System rationale: preserve satellite orientation vs. Earth (nearly stable thermal environment, filtered by service module)

Science rationale: average instrument response among channels (strenghten calibration) by field rotation

AGP Instrument design

[A. Riva, 2016] Focal M1 Plane M4 M3 M5 M4

3D Optical layout of AGP

Optical layout of AGP for the single channel

Element	Diameter	Radius	Conic	Distance to
				next element
Mask	1080.00	flat	0	1750.00
M1	1148.26	-4367.56181	-0.99265207	-1730.00
M2	309.08	-1045.77804	-1.65031622	1760.00
M3	200.00	flat	0	-1000.00
M4	180.00	flat	0	1650.00
M5	220.00	-1340.96793	-0.71077101	-1280.00
M6	240.00	flat	0	860.00

Coronagraphic system - multiple inverted occulter

13

AGP Instrument design

[A. Riva, 2016] Focal M1 Plane M4 M3 M5 M4

3D Optical layout of AGP

Optical layout of AGP for the single channel

Element	Diameter	Radius	Conic	Distance to
				next element
Mask	1080.00	flat	0	1750.00
M1	1148.26	-4367.56181	-0.99265207	-1730.00
M2	309.08	-1045.77804	-1.65031622	1760.00
M3	200.00	flat	0	-1000.00
M4	180.00	flat	0	1650.00
M5	220.00	-1340.96793	-0.71077101	-1280.00
M6	240.00	flat	0	860.00

AGP Instrument design

AGP Point Spread Function for a solar-type star

Zoomed in the central region

Individual location error and orbit-level performance

Observation close to Sun \rightarrow trade-off PSF accuracy / background / deflection

Measurement focused on bright stars V<16

10³-10⁴ stars with cumulated precision ~30 µas / orbit (+metrology/calibration)

Mission performance on light deflection

observations throughout the mission lifetime.

...but performance on orbits scales as time $\{3/2\}$: factor >2

Final message

 Let's enhance the "sparse pupil" technique research activities