

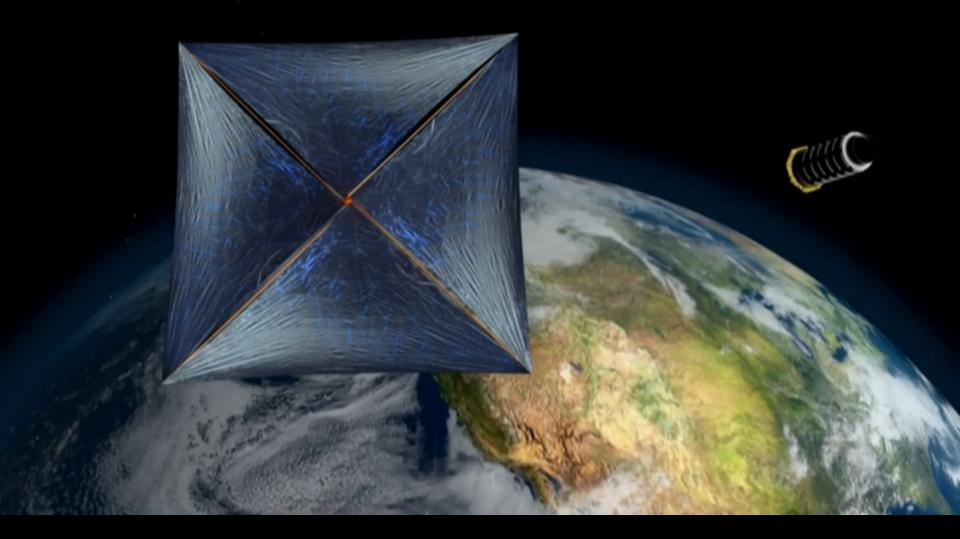




http://project-eden.space

# THE SEARCH FOR NEARBY TRANSITING EARTHS




## Luigi Mancini

Department of Physics, University of Rome Tor Vergata



We want to find Earth-like planets in the neighbors of the solar system, not only for the obvious observational reasons, but also in the spirit of future human exploration.

They will be the only planets that we can reach on a historical and non-geological time scale.





Nestor Espinoza **EDEN Expert** 

Bernoulli Postdoctoral Fellow at Max Planck Institute for Astronomy, Heidelberg. EDEN Photometry and Transit Forecast





Martin Schlecker **EDEN Graduate Student** 

Astronomy Graduate Student at the Max Planck Institute for Astronomy, Heidelberg, EDEN Observing Team and EDEN Targets Team



Marton Apai

Chief Technology Officer, IT Project Manager, Senior Software Engineer EDEN Software Development Expert









Luigi Mancini EDEN Science Team

Senior Research Staff Scientist at the University of Rome Tor Vergata





Thomas K. Henning **EDEN Steering Committee** 

Director of the Planet and Star Formation Group at the Max Planck Institute for Astronomy, Heidelbera



Jose Perez Chavez EDEN Undergraduate Student, Data Reduction Team

UA Astronomy/Astrobiology Undergraduate Student



Kerst Kingsbury UA Undergraduate Student, **EDEN Observations Team** 

University of Arizona Mining Engineering and Planetary Science undergraduate student



Allie Mousseau **EDEN Astronomy Student** 

Astronomy student at The University of Arizona, and member of the EDEN Targets



Daniel Apai **EDEN Founder** 

Associate Professor of Astronomy and Planetary Sciences at The University of Arizona. Apai's blog (apai.space) covers news and thoughts related to exoplanet exploration and astrobiology.









Benjamin Rackham

**EDEN Graduate Student** 

Astronomy graduate student at the Steward Observatory of The University of Arizona.



Alex Bixel

EDEN Graduate Student

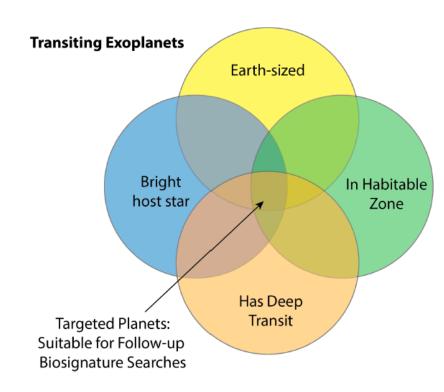
Astronomy graduate student and NASA Earth and Space Science Fellow at the Steward Observatory of the University of Arizona.



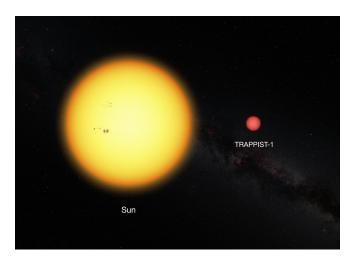
Paul Gabor

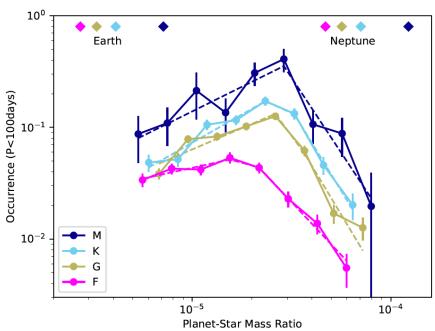
Steering Committee member

Astronomer and Vice Directory of the Vatican Observatory Research Group.

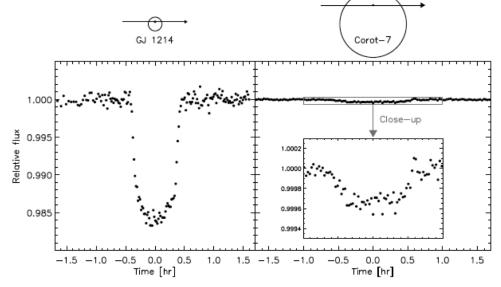

#### **FDEN Team**

Steward Observatory, University of Arizona Max Planck Institute for Astronomy, Heidelberg University of Tor Vergata, Rome **NCU Taiwan** 

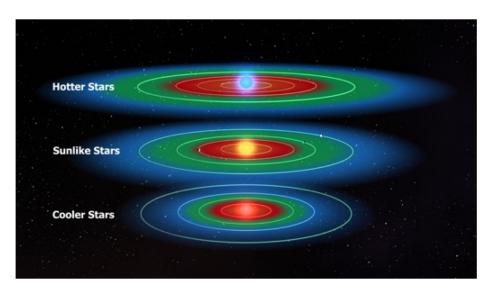

http://project-eden.space/team


# Are we looking for a needle in a haystack or is it just a sensitive problem?

- One of the most exciting forefronts of modern astrophysics is the study of Earth-sized planets, especially those in the habitable zones.
- We only know a handful of nearby systems with bright stars and transiting Earth-sized planets or transiting habitable zone non-Earth-sized planets; and only one system with relatively bright host star and deep transits of habitable zone Earthsized planets: the TRAPPIST-1 system (M8 star).
- Only 1 out of the approximately 2,800 planetary systems is suitable for follow-up spectroscopy to search for biosignatures.
- Most of the exoplanet searches are not sensitive to habitable zone Earth-sized planets.

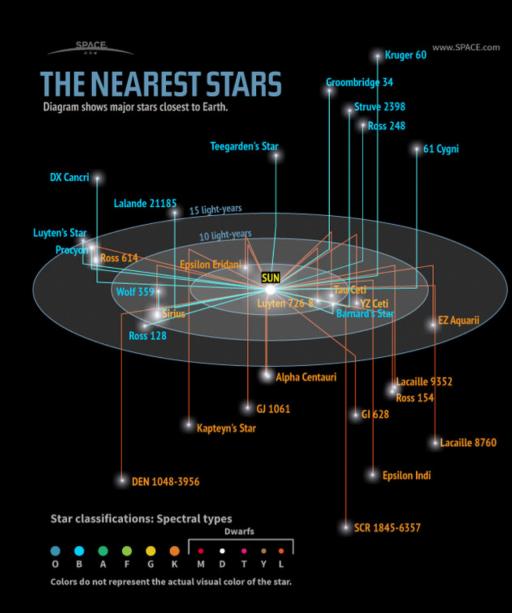



**The Small Star Opportunity** 






Pascussi et al., ApJ 856, 28 (2018)




typical transit depth is 1%



Habitable zones lie closer to the parent stars

|    |       | Star system            | Distance in light-years | Stellar type (s) | Observed planets |
|----|-------|------------------------|-------------------------|------------------|------------------|
| 1  |       | Alpha Centauri         | 4.24-4.37               | M, G, K          | 1                |
| 2  | •     | Barnard's Star         | 5.96                    | М                | 1                |
| 3  | •     | Wolf 359               | 7.78                    | М                |                  |
| 4  | •     | Lalande 21185          | 8.29                    | М                |                  |
| 5  |       | Sirius                 | 8.58                    | A, D             |                  |
| 6  | • •   | Luyten 726-8           | 8.73                    | M, M             |                  |
| 7  | •     | Ross 154               | 9.68                    | М                |                  |
| 8  | •     | Ross 248               | 10.32                   | М                |                  |
| 9  | •     | Epsilon Eridani        | 10.52                   | K                | 2                |
| 10 | •     | Lacaille 9352          | 10.74                   | М                |                  |
| 11 | •     | Ross 128               | 10.92                   | М                |                  |
| 12 |       | EZ Aguarii             | 11.27                   | M, M, M          |                  |
| 13 |       | Procyon                | 11.40                   | F, D             |                  |
| 14 | 00    | 61 Cygni               | 11.40                   | K, K             |                  |
| 15 | • •   | Struve 2398            | 11.53                   | M, M             |                  |
| 16 | • •   | Groombridge 34         | 11.62                   | M, M             |                  |
| 17 |       | Epsilon Indi           | 11.82                   | K, T, T          |                  |
| 18 | •     | DX Cancri              | 11.83                   | M                |                  |
| 19 |       | Tau Ceti               | 11.89                   | G                | 5                |
| 20 | -     | GJ 1061                | 11.99                   | М                |                  |
| 21 | •     | YZ Ceti                | 12.13                   | М                |                  |
| 22 | •     | Luyten's Star          | 12.37                   | М                |                  |
| 23 | •     | Teegarden's Star       | 12.51                   | М                |                  |
| 24 |       | SCR 1845-6357          | 12.57                   | M, T             |                  |
| 25 | •     | Kapteyn's Star         | 12.78                   | M                |                  |
| 26 | •     | Lacaille 8760          | 12.87                   | М                |                  |
| 27 | • •   | Kruger 60              | 13.15                   | M, M             |                  |
| 28 | •     | DEN 1048-3956          | 13.17                   | М                |                  |
| 29 | •     | UGPS 0722-05           | 13.26                   | T                |                  |
| 30 | • •   | Ross 614               | 13.35                   | M, M             |                  |
| 31 | •     | WISE 1541-2250         | 13.70                   | Y                |                  |
| 32 | •     | WISE 0350-5658         | 13.70                   | Υ                |                  |
| 33 | •     | Wolf 1061              | 13.82                   | М                |                  |
| 34 | •     | Van Maanen's Star      | 14.07                   | D                |                  |
| 35 | •     | Gliese 1               | 14.23                   | М                |                  |
| 36 | • •   | Wolf 424               | 14.31                   | M, M             |                  |
| 37 |       | TZ Arietis             | 14.51                   | M                |                  |
| 38 |       | Gliese 687             | 14.80                   | М                |                  |
| 39 | •     | LHS 292                | 14.80                   | М                |                  |
| 40 | •     | Gliese 674             | 14.81                   | М                | 1                |
| 41 | • • • | GJ 1245                | 14.81                   | M, M, M          |                  |
| 42 | •     | Gliese 440             | 15.06                   | D                |                  |
| 43 | •     | GJ 1002                | 15.31                   | M                |                  |
| 44 | •     | Gliese 876             | 15.34                   | M                | 4                |
| 45 | •     | LHS 288                | 15.61                   | М                |                  |
| 46 | •     | WISE 1405+5534         | 15.76                   | Υ                |                  |
| 47 | • •   | Gliese 412             | 15.83                   | M, M             |                  |
| 48 |       | Groombridge 1618       | 15.85                   | К                |                  |
| 49 |       | AD Leonis              | 15.94                   | M                |                  |
| 50 | •     | DENIS J081730.0-615520 | 16.07                   | T                |                  |
| 51 |       | Gliese 832             | 16.08                   | м                | 1                |
| 52 |       | LP 944-020             | 16.19                   | M                |                  |
| 53 | •     | DEN 0255-4700          | 16.20                   | L                |                  |
| 33 |       | DEN 0233-4700          | 10.20                   |                  |                  |

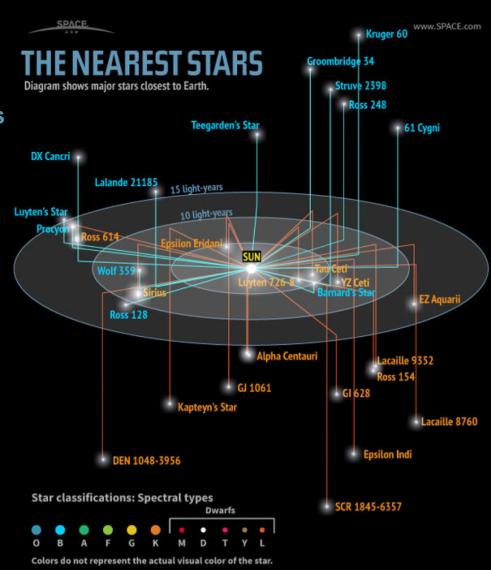


#### **Predicted Census Within 50 Lightyears**

• Stars: ≈ 1,560

• Exoplanets: ≈ 10,0000

 Temperate zone earth-sized planets: ≈ 1,000


(based on Kepler statistics for low-mass stars)

#### Discovered – as of now:

Exoplanets: 104

Approx. Earth-sized: 9

 Temperate zone earth-sized planets: 3 - 4



### **Ongoing Planet Surveys**

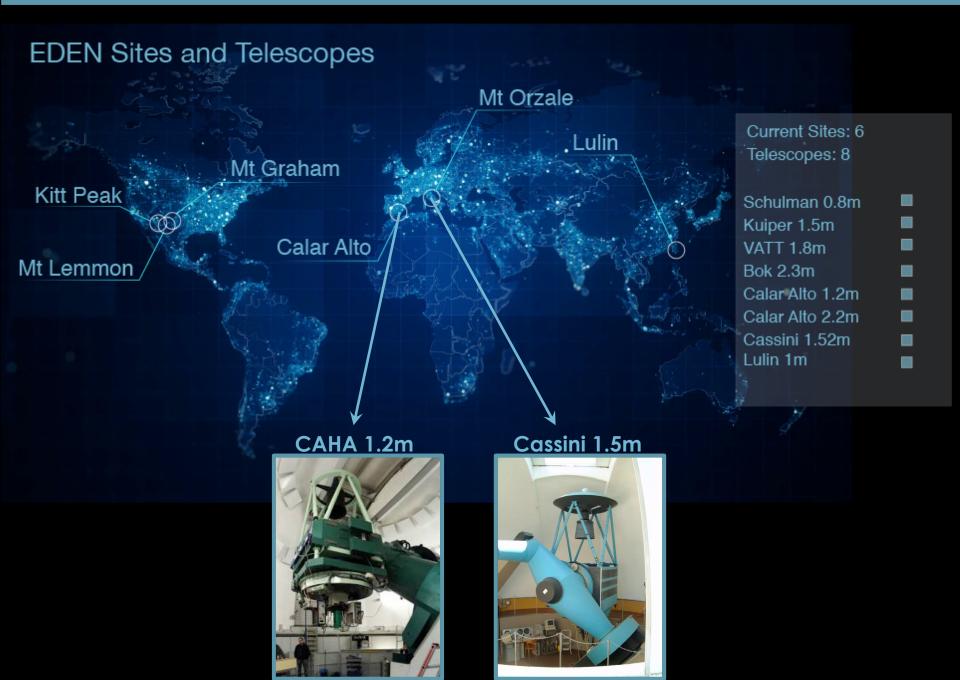
- The existing operational telescopes are limited to diameters in the 0.4-0.6m range (MEARTH, APACHE), with the first dedicated 1m telescopes (SPECULOOS) have just become operational in the southern hemisphere.
- Stars cooler than M5 have never been searched systematically for Earth-sized transiting planets on the northern sky and, for the next year, there will be no facility efficiently surveying them.

**MEARTH** (Charbonneau et al.)

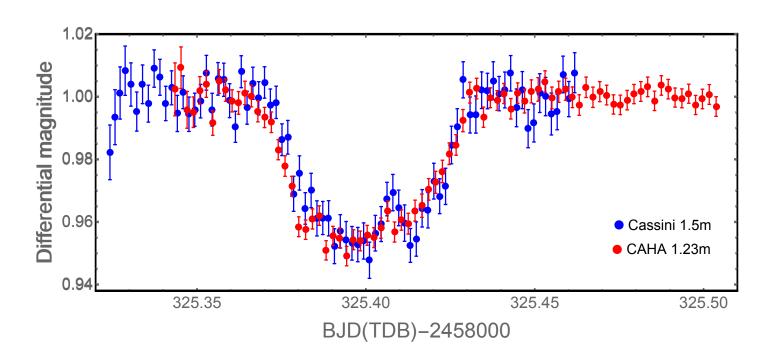


SPECULOOS (Gillon et al.)




**APACHE** (Sozzetti et al.)




#### **EDEN**

#### **Exoearth Discovery and Exploration Network**

- To find and characterize habitable worlds within 50 lightyears from the northern hemisphepre.
- Survey mid- to late-M type stars for habitable-zone Earth-sized planets with a network of medium-sized (1m-class) telescopes.
- The estimate is 1 new system for each ≈ 100 nights worth of good data.
- Non-detections will also be useful to constrain the possible existence of transiting planets (as we cover significant fraction of the HZ orbital periods).



#### WTS-2b (*V*=15.9 mag)



#### **EDEN Status**

#### Pilot Survey

complete and successful

#### Main Survey

began in Summer 2018, full operations since Fall 2018

#### **End-to-end functionality**

(Working versions of target catalog, observing procedures, data catalog, automated photometric pipeline, transit detection algorithms, trend analysis, transit fitting, data visualization, etc.)

#### TESS follow-up capability

We will follow up several dozens TESS candidates, once the northern candidates start to come out in large numbers (all current candidates have been too southern for EDEN)

#### Website, Twitter feed, Newsletter

All functional

#### **EDEN Status**

#### Data reduction

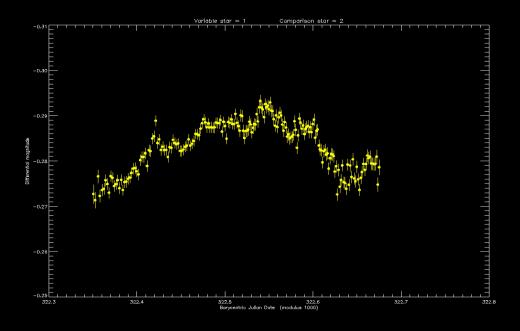
We are using two photometric pipelines for the photometry and reference-star based correction, developed by members of our team.

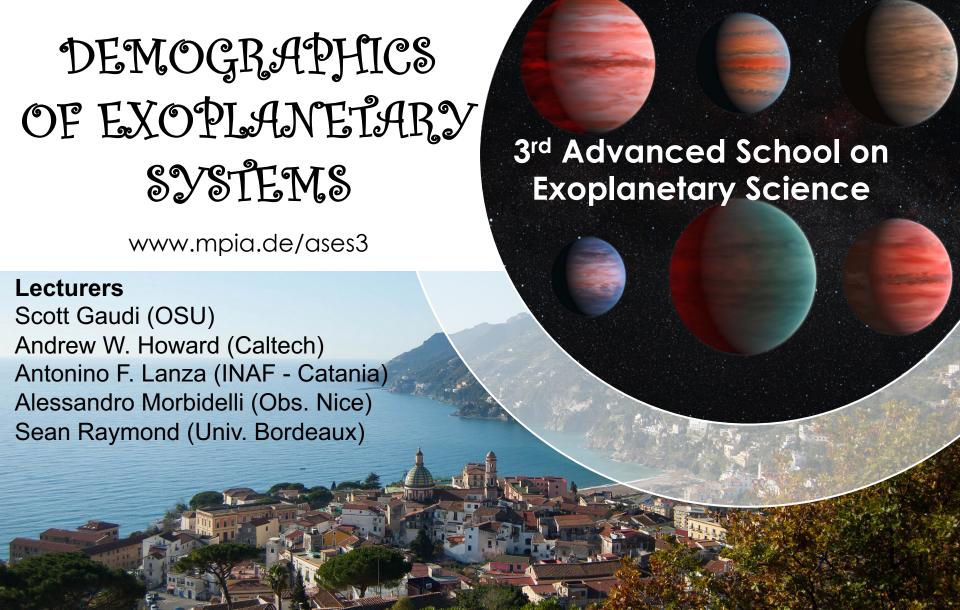
#### Light-curve analysis (de-trending and transit search)

We have three approaches:

- a decomposition into independent processes;
- a general Fourier-based trend modeling followed by a BLS search;
- a Gaussian Processes-based approach.

#### **EDEN Status**


For now, we have focused on 4 objects and will move on to next ones in December/January.


#### Summary of the # of hours on our targets so far

Cassini: 39 hours Calar Alto: 158 hours

Kuiper: 118 hours VATT: 24 hours

Schulman: 120 hours





27 – 31 May 2019 Vietri sul Mare, Italy







