

SPACE SYSTEMS

OHB Italia capabilities for TOLIMAN mission

"Finding Earth twins within 10pc", Nov. 20th 2018, ASI Rome

- Satellite design, manufacturing and operation.
- Data transmission and processing.
- Design, development and manufacturing of scientific payloads.
- Structures for aerospace applications.

MAIN PROJECTS AT OHB-I IN THE LAST YEARS

LISA Pathfinder: Inertial Sensor Subsystem

LISA Pathfinder: technology verifications of LISA mission, a gravitational waves space observatory

- OHB-I in charge of:
 - Inertial Sensor Head design, manufacturing and verification
 - Capacitive Sensor design, manufacturing and verification
 - LTP Core Assembly thermal stability analysis
 - Self-gravity compensation system development
- Launched in Dec. 2015
- Mission successfully completed after additional 6 months operation in June 2017

METIS (Multi Element Telescope for Imaging and Spectroscopy)

- Italian contribution to ESA Solar Orbiter (ESA M1) mission, aimed to the exploration of the Sun and the inner heliosphere.
- Inverted-occultation coronagraph with two separate channels:
 - VL broad-band imaging of the Sun corona 580 to 640 nm

MC

reference

surface

led sources

occulter

M2 Lyot stop

stop

polarimeter

- UV narrow-band imaging of the Sun corona (121.6 nm)
- OHB-I in charge of design, manufacturing and verification of M0, M1 and M2 Zerodur mirrors glued to Invar mechanics
- Launch planned Feb. 2020

inverted

external

occulter

OHB Italia S.p.A. / "Finding Earth twins within 10pc", Nov. 20th 2018, ASI Rome

baffle SEA

interference filter

UV detector

NO

LATT (Large Aperture Telescope Technology)

- Follow-up of ALC (Advanced LIDAR Concept)
- Apply and extend the well-established ground experience acquired on the adaptive optics thin mirrors to active optics primary mirrors
- Become the main components of space (LIDAR/ EO/astronomical) telescopes for future space missions
- OHB-I in charge of design, manufacturing and verification of Demonstrator Model (TRL 4 / 5)
- Program completed Nov. 2015

MICROGATE

Mechanical Design Capabilities

- Mechanical design at equipment, subsystem and system/satellite level of structure, accommodation, harness etc
- Separation device system (pyrotechnics and non pyrotechnics)
- Mechanism devices systems
- Metallic and composite materials
- Good knowledge of standard (welding/gluing) and non standard (Rapid prototyping / Soldering / Brazing / casting / micro casting) manufacturing processes
- Opto-mechanical design: primary and secondary mirrors accommodation

Mechanical Parts Integration and Verification

- Tools/jigs for high-precision mechanics subsystem integration
- Good heritage in high precision Metrology Inspections (Theodolite alignment of satellite subsystems / CMM for high precision mechanics assemblies)
- Extensive knowledge in Mechanical properties charaterization and material control
 - Destructive test (Tension/Lap shear/Drum peel/Flat wise)
 - Non destructive test (Ultrasonic scan/X-rays/ Dye penetrant)

Optical Parts Integration and Verification

- Trioptics digital interferometer
- Shack Hartmann wavefront sensor
- WFE measurements (heritage of METIS mirrors and interferential filter)

OHB Italia S.p.A. / "Finding Earth twins within 10pc", Nov. 20th 2018, ASI Rome

2.04-0

1.02-

Min 0 (@Nd 138)

Structural Design and Analysis SCI: LOAD CASE 1(13X,13Y,13Z), A1 Static Subcase: Displacements, Translational-(NON-LAYERED) (MAG) om: SC1: LOAD CASE 1(13X 13Y 13Z) A1 Static Subcase: Displacements, Translationa Static Analysis • Linear Non Linear Thermo-elastic Dynamic Analysis TOF-L static analysis Modal Analysis • Frequency Response Analysis e SC281 N283C40 sV10-710 A1-Static Subcase: Displace 281LN28X-40.-Y10:210, A1 Static Subcase: Disp Random Vibration Analysis • Transient Response Analysis Acoustic Analysis Shock Damage Risk Assessment Buckling Analysis Radiator modal analysis General Buckling **HV-BRICKS** static analysis • Angle Crippling Inter Rivet Buckling Buckling Analysis in Sandwich Panel

Structural Design Verification

- Complete coverage of the whole structural verification: test specification, planning, prediction, setup and instrumentation, execution and reporting
 - Unit/sub-unit level
 - Subsystem level
 - System Level (e.g. Satellites)
- Static Testing
 - Metallic and Non metallic Material Characterization
 - Component and S/S level testing (i.e. Strength, Stiffness, ...)
 - Satellite level testing
 - Dynamic Testing (according to ECSS-E-10-03A, RTCA/DO-160E, MIL-STD-810F)
 - Modal Survey
 - Sinusoidal Vibration
 - Random Vibration
 - Shock
 - Acoustic

Thermal design, Analysis and Verification Capabilities

 Thermal Design and analysis at equipment, subsystem, system and mission level based on standard tools or selfdeveloped and validated tools (e.g. frequency domain thermal analysis and transfer function)

MWI - Sun intrusion study

MWI – OBCT thermal model

MWI-FEE board thermal model

Thermal design, Analysis and Verification Capabilities

- Thermal Test planning, test specification, setup preparation, test execution and reporting:
 - Unit/sub-unit level (electronics boxes, single boards, batteries, mechanisms, sensors);
 - Subsystem level
 - System Level (e.g. Satellites)
- Good experience in the procurement process and sub-contractor /supplier management for:
 - MLI /SLI (Multi Layer Insulation / Single Layer Insulation)
 - Heater/thermostats
 - Heat Pipes/Loop Heat Pipes
 - Coatings (paints, tapes, surface treatments)

ASIM thermal vacuum test

Key feature	OHBI experience
Low cost scientific mission	\checkmark
Optical payloads	\checkmark
Stable thermal and mechanical design (with low CTE materials)	\checkmark
Active controlling spacecraft temperature to <0.1K	\checkmark
A network of thermal sensors to monitor all structural elements	\checkmark

- OHB Italia works in close cooperation with space agencies, research institutes and large industrial groups.
- Consolidated technical expertise at system, instrument and equipment level has been demonstrated in several missions operated in the past and currently under operation or in the development phase.
- The TOLIMAN mission can take advantage of the engineering capabilities available at OHB Italia, in particular, but not limited to, in the structural, thermal, optical, mechanical and mechanisms areas.
- For instance these competences can be effectively implemented for the TOLIMAN space telescope temperature control and thermal stability to limit the impact of various forms of systematic noise