Interpreting ultra-precise small-angle double-differential Stellar Astrometry: Lessons from the Sun Jeff Kuhn, Institute for Astronomy, University of Hawaii

- Optical centroid changes due to non-uniform surface brightness variations:
 - Magnetism
 - Reynolds stress from turbulence and stellar rotation
- "Effective wavelength" changes
 - Stellar effective temperature variations

Other precise Solar satellite photometry : SOHO, ACRIM

- Magnitudes benchmark: 5 M_{Earth} around aCen, 10 x 10⁻⁶ arcsec
 - Diffraction limit of 10cm aperture at 500nm is 1 arcsec
 - $1R_{sun}$ at D_{aCen} has 6×10^{-3} arcsec angular diameter
 - 0.1% total brightness change at limb of Sun is 3 x 10⁻⁶ arcsec centroid change
 - Depending on optical passband, 1 deg K stellar temperature change (uncorrected) could create a "few hundred"x 10⁻⁶ arcsec spurious centroid shift

Solar Irradiance changes...

Solar Magnetism: Summary

Magnetism is directly associated with most solar brightness variations

Irradiance changes and solar magnetism

The slow variations using 30d averages are plotted here

This plot shows the residual from the 150d moving means.

Dynamic Radiative Photosphere, Convection and Radiation

Spots and faculae create flux changes by angular redistribution of local luminosity

1. Magnetic brightness perturbations largest edge on

2. Magnetic brightness have short-term anticorrelation

Solar rotation creates angular variation in active region irradiance ...

Continuum blue flux contrast vs. vertical orientation and magnetic flux (CaK flux)

Apparent solar brightness change is flux redistribution

HMI: Microarcsecond Solar Limb Astrometry Where's the limb? Distinguishing brightness and limb position

Solar microarcsecond astrometry: Spatial-temporal power spectra for p-mode oscillations

1% Solar limb brightness variations in time from 4 years of HMI $\alpha(\Theta, t)$

·** ** · 编》 编入 化乙酸盐制作用 "我们就是你是这个问题的,我们就是你们的。""你们的你们的?""你们的你们的,你们的你们不是你的你。""你们就是你们的,你们们还没有你的。""你们,你们还能能能是你们的吗?"

4 yi

ر الاران الارانية من معني معني فراني المراجع في معالمية من المراكز المراكز المراجع والمراجع والمراجع والمراجع ال

Spots and faculae: Long coherence time, and about 1microarcsec power amplitude in 1 year observation of centroid shift near 1 year period

Sun has more than active region faculae and sunspots – these create significant stellar effective wavelength changes and large apparent astrometric separation changes in aCen or 61Cyg

The Limb solar temperature

(Kuhn, Libbrecht, Dicke 1985)

The effective temperature of the Sun fluctuates by about 1K on short and long timescales. aCen stellar temperature changes should be measured continuously to 1% or better

Final thoughts....

- To interpret aCen astrometry for exoplanet signals we should understand aCenA/B stellar activity variability with continuous measurements of...
 - Magnetic field Stokes-V polarimetry in photospheric lines
 - Effective temperature from multi-wavelength continuum brightness flux
 - Proxy chromospheric flux measurements, i.e. in Call K

Interpreting Alpha Cen Astrometry using lessons from the Sun

Jeff Kuhn, Institute for Astronomy, University of Hawaii, Maui