Finding Earth Twins WITHIN 10PC

A conference devoted to developing the Italian involvement in TOLIMAN

Pushing tech developmentes for
Exoplanets search in Italy
Roberto Ragazzoni INAF
Astronomical Observatory of Padova

"90

*)
*)
*)
\sim

Discovery

Discovery

Discovery

Characterization

Discovery

Discovery

Characterization

Discovery

Characterization

Discovery

Characterization

Discovery

Characterization

Wide Field

Location of all the stars with known exoplanets

From space...

Evolution with time (and meetings)

Evolution with time (and meetings)

- Aspherics drop to 1
- BaF2 disappears
- CaF confined to small and non thermal-critic lens
- One window in front of 6 lenses
-Pupil size grows to 120 mm
- Field of View increased up to 40°

Evolution with time (and meetings)

- Aspherics drop to 1
- BaF2 disappears
- CaF confined to small and non thermal-critic lens
- One window in tront of 6 lenses

Evolution with time (and meetings)

- Aspherics drop to 1
- BaF2 disappears
- CaF confined to small and non thermal-rritir lens
- One window in front of 6 lenses
- Pupil size grows to 120 mm
- Field of View increased up to 40°

Evolution with time (and meetings)

- Aspherics drop to 1
- BaF2 disappears
- CaF confined to small and non thermal-critic lens
- One windowi in front of 6 lenses
-Pupil size grows to 120 mm
- Field of View increased up to 40°

Length units are mm CTE units are ppm

Uniform Temperature Gradient

- = optical element mechanical constraint
T nominal $\pm \Delta T$

T nominal

From ground...

Fly-Eye

Fly-Eye

Fly-Eye

Secondary Optics with16 Optical Tubes/Camera
 Axis

Us \& them...

Photometry

Exoplanets discovered by transits

CHEOPS

Holographic diffuser

- Tested in the lab as an option for CHEOPS
- Discarded because not enough TRL to fly
- Under implementation for Asiago test
- Spreading of light allow for:
- Non saturation
- More robust to pixel to pixel variations
- For bright stars we are studying a concept where only the central (bright) source is diffused and the others are used as reference

Adaptive Optics

A pyramid wavefront sensor

Adaptive Optics

Wavefront Sensing

Performances...

ExoPlanets examples...

- First detection in H of HR8799b,c, d, e

LBTAO/PISCES H-band

(some) interferometry...

Shark-NIR

Shark-NIR

Weight: 350 kg Size: 1500×800
x 800 mm

Spectroscopy

$\bullet \bullet \bullet$ $\bullet \bullet ~$

51 Peg
 Distanza: 0.05 AU
 Vel Rad. 60 m/s

Giove

Distanza 5 AU
Vel. Rad. 12.7 m/s

Proxima b

Distanza 0.05 AU
Vel. Rad. 1.4 m/s

Terra

Euler+Coralie - La Silla (1998-...)

1.2-m Euler Swiss telescope Simultaneous thorium technique
Precision: $\sim 3 \mathrm{~m} / \mathrm{s}$-> Photonnoise limited (-> 3-10 m/s)

>40 PLANETS

Towards 1 m/s: Stability

Optical design of the spectrograph...

OptoMech project

Integration with CMM

First Light

Wrap-Up....

- Complex optomechanical systems from both ground and space
- Wide (\& very wide) innovative optical systems with large number of resolution elements
- Innovative (very) accurate measurements and control of wavefront in Optical \& NIR
- Precision spectroscopy
- Interferometry
- Are these bricks to develop a locally monitored high performance imager or interferometer with astrometric capabilities...???

