Detection and characterization Of Giant Planets Combining Astrometry, Radial Velocities and Transits: The GAIA Potential

Comparative Planetology Rapidly evolving field

The number of discovered planets changes every day.

Now we know 2896 planetary systems / 3885 planets / 645 multiple planet systems.

The 90\% of the known planets was discovered using an indirect method

Year of Discovery (year)

The indirect methods of detection

Radial velocities
Cons: Minimum Mass

Transit method
Cons: Transit probability

Astrometric method Cons: Volume limited

$$
M_{\text {planet }} \sin i
$$

 $M_{\text {planet }} \sin i$

 $M_{\text {planet }} \sin i$}

$$
\varsigma=\left(M_{p} / M_{\star}\right) \times\left(a_{p} / d\right)
$$

When a planet transits its star: a treasure trove

The planet becomes a target for structure, chemistry, and dynanics of atmospheres characterization

Figure from Seager (2010), Exoplanet Atmospheres

Atomspheric characterization via transmission spettroscopy

Can GAIA contribute?

Gaiอ: a 20 นas machine!

2-3 M_{J} planets at $2<a<4 \mathrm{AU}$ are detectable out to 2200 pc around solar analogs

Saturn-mass planets with $1<a<4$ AU are measurable around nearby ($\leqslant 25 \mathrm{pc}$) M dwarfs

Unbiased, magnirude-limirted planet census of hundreds of thousands stars

Long-period (> 1 yr) giant planets $=$ "Cold" ($\left.\mathrm{T}_{\text {eq }}<200 \mathrm{~K}\right)$ giant planets

 0

They constitute a valuable sample for comparative studies with those of the outer planets of our Solar System.

Gaia detection probabilities

Astrometric signature

$$
\varsigma=\left(M_{p} / M_{\star}\right) \times\left(a_{p} / d\right)
$$

M dwarfs starcounts to $\mathrm{C}=20$ within 100 pc: $\sim 500 \mathrm{k}$ stars
Simulated sample from the Besancon Galaxy Model
~ 2600 giant planets around M dwarfs at d < 100 pc
~ 100 giant planets around M dwarts at d < 33 pc

Focusing on bright M dwarfs Measuring (Transiting) Systems Configurations Simulation setup

Test on the Lepine \& Gaidos (2011) sample

8793 M dwarfs (M0M8)
$1 \mathrm{M}_{\text {jupiter }}$
$\mathrm{I}=90^{\circ}$
$0.2<\mathrm{P}<5$ years

Focusing on bright M dwarfs Measuring (Transiting) Systems Configurations Simulation setup

Test on the Lepine \& Gaidos (2011) sample

8793 M dwarfs (M0M8)
$1 \mathrm{M}_{\text {jupiter }}$
$\mathrm{I}=90^{\circ}$
$0.2<\mathrm{P}<5$ years
$0<\mathrm{T}<\mathrm{P}$ years
$0<e<0.6$
$7 \mu a s<$ a $<4970 \mu a s$
The adopted error model (Sozzetti et al. 2014) is still consistent with the expected end of mission performance (Lindegren et al. 2018)

A Hybrid DEMCMC method for orbit reconstruction

Why do we need this?

-Fitting orbits of exoplanets: high-dimensional spece, non linear parameters...
-Brute-force multi-dimensional grids: eventually will succeed, but very time consuming, particularly in the economy of the Gaia pipeline
-Some options (periodograms + local minimization) are not applicable to Gaia

The Differential Evolution Monte Carlo Markov Chain (DEMCMC) technique has the advantage of being well suited to high-dimensional parameter spaces.

GAIA + RV Follow-up

~10[days] uncertainty on the Transit Epoch in $0.1<\mathrm{P}<5$ yrs Period range

Focusing on the synergies

WHY?

Big opportunities for planat characterization with the bright sample of nearby stars

The sample of the nearest ($\mathrm{d} \leqslant 25-30 \mathrm{pc}$) and bright ($\mathrm{J} \leqslant 10$) Mdwarfs is amenable to combined studies with a wide array of observational techniques

EPIC248847494
 The longest period transiting planet candidate from K2 Giles et al. 2018

$P \sim 10 \mathrm{yrs}$
Radius $=1.1 \mathrm{R}_{\text {jupiter }}$
Mass ~ $1 \mathrm{M}_{\text {jupiter }}$ from 1 yr RV campaign with CORALIE @ ESO
$\mathrm{I}=90^{\circ}$
eccentricity ???
Host star:
$0.9 \mathrm{M}_{\text {sol }}$
$2.7 \mathrm{R}_{\text {sol }}$
Distance $=560$ pc

GAIA + RV Follow-up

Summary

We investigated the impact of Gaia astrometry in the exoplanets field and the potential symergies between Gaia astrometry and other ground-based and space-borne programs, focusing on:
a) the potential for Gaia to precisely determine the orbital inclination, which might indicate the existence of transiting long-period planets:
b) the ability of Gaia to carefully predict the ephemerides of transiting planets around M stars for photometric and spectroscopic follow-up characterization.
c) the ability of Gaia, combined with RV. to fully characterize the orbit of long period transiting planets.

Preliminary results are encoureging:

