Spin-Reversals in the X-ray Binary Pulsar OAO 1657-415

I. Saathoff, L. Ducci, A. Santangelo
Institute for Astronomy and Astrophysics, University of Tübingen, Sand 1, 72076 Tübingen, Germany

Abstract

OAO 1657-415 is an X-ray binary pulsar that exhibited a long-term spin-up trend with short-term torque reversals in the past. In this work we present over 10 years of data from Fermi/GBM and Swift/BAT to study the long-term spin behavior and the torque-flux relation of this source, using current accretion torque models.

The frequency history shows that the source is no longer on a spin-up trend but has settled in an equilibrium spin period of about 27 mHz with short-term spin-reversals.

The analysis of the torque-flux relation shows a correlation when the source is spinning up, indicating that matter is likely accreted from a stable accretion disk. The observations during the spin-down of the pulsar could be explained by accretion from a retrograde disk or a sub-Keplerian behavior of the disk. The accretion process in this regime, however, remains elusive. A domain where the torque is close to zero has also been observed with a highly variable flux, which could be explained by direct accretion from the stellar wind of the companion.

Theory

 - Disk accretion including the magnetic coupling between star and disk
 - Axis-symmetric disk accretion by aligned rotator
 - Torque-flux relation: \(\nu \propto F^{6/7} \)

Data & Methods

- Over 10 years of data:
 - Fermi/GBM and Swift/BAT
 - 16 August 2008 - 8 December 2018
- Fermi Timing:
 - Frequency calculated for indicated time intervals
- BAT Flux (15 - 50 keV):
 - Extrapolated for an energy range 0.1 - 200 keV
 - Measured fluxes during eclipse removed
 - Averaged during time intervals

Results & Discussion

- Timing Results
 - OAO 1657-415 is at equilibrium frequency \(-27.04\) mHz
 - Short-term (few hundred days) spin-up and spin-down
- Torque-Flux Correlation
 - Three domains: Spin-up, spin-down, and in-between (red, green, yellow in plots)
 - Correlation during spin-up evident
 - Ghosh-Lamb fit (green and red lines in plot) with results in trends in residuals
 - Variability: spin-up: 20.9%, spin-down: 36.5%, in-between: 34.8%

Conclusions

- Torque-Flux Correlation
 - Spin-up: accretion from a stable accretion disk
 - Spin-down: possibly accretion from a retrograde accretion disk
 - In-between: accretion from stellar wind or two-stream accretion
 - Model of Ghosh & Lamb represents data insufficiently (as indicated by the trends in the residuals)

*saathoff@astro.uni-tuebingen.de