

Multiwavelength Campaign on NGC 7469: **Photoionisation Modelling of the Emission Line Regions**

S. Grafton-Waters^{*}, G. Branduardi-Raymont, M. Mehdipour, M. Page, E. Behar, J. Kaastra and the NGC 7469 collaboration

* Email: sam.waters.17@ucl.ac.uk

Abstract

The Seyfert 1 galaxy NGC 7469 was the target of an extensive observing campaign with XMM-Newton in 2015. Analysis of the 640 ks RGS spectrum^[1] with the spectral fitting code SPEX, and the physically self-consistent photoionisation model PION, shows that the emission line region (ELR) is multi-phased, while still accounting for three warm absorber (WA) components. We discuss how adjusting the volume filling factor (C_v) could resolve the differences of distance estimates obtained from variability arguments. Further comparisons made with other AGN (NGC 5548 and NGC 3783) are presented.

- > We find three WA components and three emission components (two narrow and one broad) within the nucleus of NGC 7469.
- \succ We characterise the emission features in NGC 7469 for the first time, deriving estimates for the minimum distances of the ELR from the central engine using Eq. 1, below.

Figure 1: Comparing the distances between the WAs (green) and the ELRs (orange) with respect to the central black hole.

- $r \gtrsim 2.5$ pc for the two narrow line components (EM1 & EM2).
 - Adopt an extended emission region;
 - Assume $C_v = 0.1$ (see third column in Table 1).
- This places the ELR further out from the black hole than the WA (Figure 1).
- For the broad emission line region (EM3) the distance is found at either 0.03 pc (assuming $C_v = 0.001$) using the ionisation parameter (ξ), or 0.004 pc if the outflow velocity ($v = -4460 \text{ km s}^{-1}$) is used.

- \succ From variability arguments ^[2, 3], on the other hand, the distance of the WA is \sim 10 times larger than EM1 and EM2 (Figure 2).
- \succ Therefore, 0.1 < C_v < 1 will place the narrow ELR at a similar distance to that derived from variability arguments for the WA components.

$$T_{min} = \frac{L_{ion} C_{v}}{N_{H} \xi}$$

(Eq. 1)

Figure 2: Comparing the distances of the ELR (purple) to the WA distances (red) in this work, and from variability arguments (blue) ^[2]. It shows that if $0.1 < C_v < 1$, then the ELR is at a similar distance as

the WA.

- We compare the ELR of NGC 7469 with those within NGC 5548^[4] and NGC 3783^[5], calculating the lower ELR distance limits within each AGN using Eq. 1 (see Table 2).
- The ELR distances in NGC 5548 are comparable to previous analysis of the NLR (r = 13.9 pc)^[6].
- The narrow (N1) and broad (B1) ELR distances in NGC 3783 are comparable to each other (Table 2) due to the large ionisation parameter of N1.
 - We overcome this problem by allowing $0.1 < C_v < 1$ for the narrow ELRs.
 - Alternatively, the broad emission component may have $C_v < 0.001$. •

Conclusions

 \succ Minimum distances of the narrow ELR within NGC 7469 have been estimated at $r \gtrsim 2.5$ pc (Figure 1). \Rightarrow For the ELR to be further away from the black hole than the WA, $C_v = 0.1$ (third column of Table 1). \succ However, from variability arguments, the WA distance is \sim 10 times larger than ELR distance. \Rightarrow Therefore, we require a range of 0.1 < C_v < 1 to overcome this inconsistency (Figure 2). \geq If the broad ELR has C_v < 0.001, then the ionisation and kinematic distance measurements for EM3 are consistent within NGC 7469. Large uncertainties in C_v mean further work is required to investigate this parameter.

Date	NGC 3783		
2000/01	0.01	1.94	0.01
11 Dec 2016	0.03	10.4	0.01
21 Dec 2016	0.04	15.6	0.01

Table 2: Comparing the ELR distances within NGC
 5548 (top)^[4] and NGC 3783 (bottom)s^[5].

References

[1] Behar et al. 2017, A&A, 601, A17 [2] Mehdipour et al. 2018, A&A, 615, A72 [3] Peretz et al. 2017, A&A, 609, A35 [4] Mao et al. 2018, A&A, 612, A18 [5] Mao et al. 2019, A&A, 621, A99 [6] Whewell et al. 2015, A&A, 595, A85