An X-ray cluster hidden in the glare of a bright quasar

Jonathan C. McDowell (CfA), Katherine Blundell (Oxford), Aneta Siemiginowska (CfA), Luigi Gallo (StMary’s U.)

This work is supported by Chandra grant GO6-17117X and NASA contract NAS8-03060 (CXC)

We report the discovery of a z=0.68 X-ray cluster in the field of the unusual z=0.96 quasar PG1407+265. The cluster contributes about 10% of the X-ray flux of the source.

This quasar is strange

PG1407+265 was discovered by Richard Green (Green et al 1983) in the PG survey. It is a luminous (Lbol=9 x 10^{43} L_{sun}), massive (M_{BH}~ 5 x 10^9 M_{sun}) quasar. Its optical lines are anomalously weak (Fig 1, left) and show velocity shifts up to 13000 km/s (McDowell et al 1995). It is nominally radio-quiet but has a weak parsec-scale radio jet (Blundell, Beasley and Bicknell 2003). Gallo (2006) saw factor 2 X-ray variability in 2 months with XMM

We observed the field with BINOSPEC Fabricant et al 2019) on the MMT and obtained redshifts of 10 objects (cyan and yellow double circles), supplemented with SDSS redshifts and SDSS photo z estimates (yellow). The cyan polygon indicates the approximate extent of the X-ray extended emission. Several galaxies in the region have z=0.68 – perhaps this is the cluster redshift? In the inset below right, a different stretch of the X-ray image is superimposed for context.

Chandra’s spatial resolution reveals a large X-ray nebulosity next to it

We think it’s a foreground cluster.

Chandra’s ACIS S3. Red: 0.3-1 keV, Green: 1-2.5 keV Blue : 2.5-8 keV.
Extent is about 1 arcminute. Data reduction using CIAO 4.11
Exposure time 41.5 ksec. Quasar: 2077 net counts. Extended emission: 345 net count
Observed flux of extended emission: F(0.5-10 keV) = 6 E-14 erg/cm2/s

We needed Chandra to see the cluster properly!

Fig 3b: XMM MOS image in which the cluster is barely resolved.

X-ray spectra confirm the z=0.68 cluster

We extract and fit X-ray spectra using CIAO and Sherpa (Fruscione et al 2006, Freeman et al 2001).

The nucleus is fit with a power law and an additional gaussian at 7.0+0.1 keV (quasar rest frame) – is there a blueshifted Ka line?

The nebula is well fit by a MEKAL model with z=0.68; in particular the feature at about 4 keV is fit by the redshifted Fe Ka line generated by MEKAL. To improve the fit, two additional lines have been added at observed energies of 2.77 and 5.49 keV (corresponding to E=4.65 and 9.22 keV at z=0.68); their nature is unclear. The temperature is poorly constrained at 2.5 < kT < 4.5 keV and varies across the region as is evident in the X-ray color image.

The presence of the feature at the energy expected for a redshifted Fe Ka line at z=0.68 combined with the presence of multiple z=0.68 galaxies in the region leads us to conclude that this is the cluster redshift.

The X-ray luminosity of the cluster is then L(0.1-2.4 keV) = 1.4x10^{44} erg/s

The luminosity of the quasar in Mar 2017 was L(0.1-2.4 keV)=1.4x10^{45} erg/s and L(1-10 keV) = 2.0x10^{45} erg/s

References

Blundell, Beasley, Bicknell 2003
ApJ 591, L103
Fabricant et al 2019, PASP in press
Freeman et al 2001, SPIE 4777, 76
Fruscione et al 2006, SPIE 6270, 60
Gallo et al 2008 MNRAS 385,960

Fig 5 X-ray spectra, fits and residuals. Left: nuclear region. Right: extended emission.

Not the culprit: If cluster had been at the quasar z it might have been a clue that environment played a role in the unusual properties of the quasar. But it isn’t – must look for other explanations

What else are we missing? How many other X-ray clusters are missed because of a bright X-ray AGN? Only Chandra can tell us...