Torus Constraints of ANEPD-CXO245: A Compton-thick AGN with Double-Peaked Narrow Lines

Martin Herrera-Endoqui¹, Takamitsu Miyaji², Mirko Krümpel³, Masaki Hansawa², Ayano Shogakō³, Shuji Matsuura⁴, Atsushi Tanimoto⁵, Yoshihiro Ueda⁶
AKARI NEP Deep Field Team
¹Instituto de Astronomía, sede Ensenada, UNAM, México. ²Leibniz Institut für Astrophysik, Potsdam, Germany. ³Department of Physics, Kwansei Gakuin University, Japan. ⁴Department of Astronomy, Kyoto University, Japan.

Abstract

We constrain the torus parameters of the Compton Thick (CT) AGN ANEPD-CXO245 (z=0.499), which shows double-peaked optical narrow line region (NLR) emission lines, located in the AKARI NEP Deep Field. We analyze the X-ray spectrum, obtained with Chandra using the X-ray clumpy torus model XCLUMPY by Tanimoto+2019, and the UV-optical-IR SED, including the unique AKARI nine-band photometry over 2-24 µm, using our implementation of the model CLUMPY by Schreiber+2016. With the combination of these analyses we are able to constrain the torus optical depth, X-ray absorbing column, torus angular width, and viewing angle. The results show that the line of sight crosses the torus, as expected for type 2 AGN. Comparing the optical depth of the torus from the UV-Optical-IR SED and the absorbing column density from the X-ray spectrum, we find that the gas-to-dust ratio is about 8 times larger than the Galactic value.

References

3. Pearson+, in prep

Introduction and motivation

Doble peaked narrow line regions appear in about 1% of the present-day type 2 AGN (Liu+2010). They can be caused by dual AGN, wind driven outflows, radio-lit driven outflows, and rotating ring-like NLR (Type NLR) (Schreiber+2015). Knowing the geometrical parameters of the torus can help to discriminate among some of these scenarios, particularly between the case of a dual AGN and rotating ring-like NLR: if the opening angle of the torus is narrow, it is more difficult for a rotating ring-like NLR to cross the ionization cone and this scenario would be unlikely. On the other hand, if the line of sight is almost perpendicular to the polar axis, the two sides of the bipolar outflow would show similar high velocities and this scenario would be unlikely. This also tells us something about the evolutionary stage of CT-AGN, since they can be at the stage of spiral feedback through outflows or tidally-disrupted in-falling clouds generating a ring-like structure.

Data

We combine information from our multi-wavelength survey on the AKARI NEP Deep Field (ANEP) where deep observations with all the nine bands of the InfraRed Camera (IRC; 2.3, 3.4, 7.9, 11.15, 15.18 & 24 µm) were made, including Chandra X-ray observations (Krümpel+2015; Miyaji+2017), VIS/NIR optical spectroscopy (Shogakō 2013) and UV-optical-IR infrared spectroscopy (Hannami+2012) for the object ANEPD-CXO245. This object was found from AKARI Survey on the North Ecliptic Pole (NEP) region (AKARI NEP Deep Field; e.g. Matsuhara+2006).

Optical spectrum

The KECK DEIMOS spectrum of ANEPD-CXO245 in rest frame. The fluxes of each emission line have been measured in two independent continuous flux units. We observe, among other things, that the profiles of [OII]λ5007 in the radial velocity space is well separated by a narrow and a broader components (inset). Other profiles ([Ne]λ3869 and [Ne]ιλ3245) show similar double peaks. The star formation dominated line [OIII]λ2777 is single-peaked. Our normal reddish (ζ = 0.098) is based on this line.

Modern AGN torus models (like the one shown above; Nenkova+2008), both in the infrared and X-rays, have opened up the possibility of constraining its geometric parameters such as the torus angular width (α) and the viewing angle (θ), in addition to the optical depth and the X-ray absorbing column density. In this work we analyze the X-ray spectrum and the UV-optical-IR SED in order to discriminate between the bi-polar flow and the rotating ring-like NLR scenarios, by finding the geometrical parameters of the AGN torus.

Analysis and results

Combining the obtained values of NH from the X-Ray analysis and τOIII from the IR analysis we find N[OII]λ5007 = 2 × 10^{21} cm^{-2} mag^{-1}, while the Galactic value is N[OII] = 1.87 × 10^{21} cm^{-2} mag^{-1} (Draine 2003). This implies that the gas-to-dust ratio in the torus of ANEPD-CXO245 is at least 8 times larger than that of our Galaxy, which is consistent with the results from e.g. Tanimoto+2019, who have found a gas-to-dust ratio of ~26 times the Galactic value for the nearby CT-AGN the Circinus galaxy.

Data

We use UVI photometric measurements from GALEX (Burgarella+2015), Subaru Telescope Suprime Cam (SCAM) (Murata+2013), Canad-France-Hawaii Telescope (CFHT) Megacam absorption column (Molendi+2007), Herschel PACS (Pearson+2013)/SPIRE (Pearson+, in prep).

X-ray data and reduction

A major fraction (~ 0.25 deg²) of ANEPD has been observed with Chandra with a total exposure of ~300ks (Krümpel+2015). ANEPD-CXO245 is covered by the Chandra ACIS-I FOVs of seven OBSID (total exposure of 200ks). The X-ray spectrum of each OBSID has been measured using Chandra using the X-ray clumpy torus model XCLUMPY by Tanimoto+2019, and the UV-optical-IR SED, including the unique AKARI nine-band photometry over 2-24 µm, using our implementation of the model CLUMPY by Schreiber+2016. With the combination of these analyses we are able to constrain the torus optical depth, X-ray absorbing column, torus angular width, and viewing angle. The authors acknowledge financial support from PAPIIT IN111319 and CONACyT 252351.

X-ray spectrum

Chandra spectrum of ANEPD-CXO245. The spectrum is analyzed with XSPEC using the new X-ray Clumpy Torus model XCLUMPY (Tanimoto+2019). Shown are the best-fit model and the contribution of various components. Also shown is the integrated probability grayscale image and its 68% and 95% contours. The spectrum shows a strong Fe Kα line characteristic of a CT-AGN.

Future prospects

The Wide Field Imager (WFI) on the future Advanced Telescope for High Energy Astrophysics (ATHENA) is expected to be able to obtain a useful spectrum of this object up to the rest frame energy of ~20 keV, tracing some of its Compton hump in the continuum. A preliminary spectral simulation shows that a 100 ks WFI observation of this object would be able to constrain α (i) to approximately 20° (90% confidence) level. The Mid-Infrared Instrument (MIRI) on board the James Webb Space Telescope (JWST) would allow us to obtain a continuous spectrum of this object in 5 ≤ λ ≤ 25 µm with at least 10σ per pixel wavelength resolution even with a < 10 ks of exposure in each configuration (Glassy+2015) and would tighten constraints on the torus parameter α.


References