

On the origin of steep emissivity profiles in AGN accretion discs

E. Kammoun¹, V. Domček², J. Svoboda³, M. Dovčiak³, G. Matt⁴

¹Department of Astronomy, University of Michigan, ²Anton Pannekoek Institute/GRAPPA, University of Amsterdam, ³Astronomical Institute of the Czech Academy of Sciences, ⁴Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre

(Kammoun et al. 2019, MNRAS, 485)

Objective

X-ray observations suggest high compactness of coronæ in active galactic nuclei as well as in X-ray binaries. The compactness of the source implies a strong radial dependence in the illumination of the accretion disc. This will, for any reasonable radial profile of the density, lead to a radial profile of the disc ionization. Svoboda et al. (2012) showed on a single example that assuming a radially structured ionization profile of the disc can cause an artificial increase of the radial emissivity parameter. We further investigate how the X-ray spectra are modified and quantify this effect for a wide range of parameters.

The radial ionization profile $\xi(r)$, for various lamp-post heights. We assume the same inner ionization parameter $(\log \xi_{in} = 2.5)$ for all the cases.

The innermost regions are highly ionized. The outer regions are neutral \Rightarrow The resulting spectrum is the sum of the contributions from each radius and might affect the radial emissivity parameter.

Method

Results

- For low and large values of ξ_{in} , the parts of the disc contributing the most to the observed spectrum would be either neutral or highly ionized \Rightarrow a small gradient of ionization would be expected in these parts of the disc \Rightarrow constant-ionization approximation holds \Rightarrow lower values of q.
- For the intermediate values of ξ_{in} , the gradient of ionization is more important. The innermost regions will be more ionized and will have softer reflection spectra. The outer regions of the disc are less ionized \Rightarrow model assuming a single ionization parameter of the disc will underestimate the ionization from the innermost regions by assuming an average ionization. \Rightarrow This effect will then be compensated by requiring a steep emissivity profile.