

The X-ray emission from hot subdwarf stars

N. La Palombara¹, Sandro Mereghetti¹, Paolo Esposito², Andrea Tiengo² (1 - INAF / IASF Milano, 2 - IUSS Pavia)

The hot subdwarf stars

- subluminous blue stars that, in the Hertzprung-Russell diagram, lie between the main sequence (MS) and the white-dwarf (WD) sequence, at the blue end or beyond the horizontal branch (HB)
- progeny of low-mass (about 1 M_{\odot}) main-sequence stars that have lost most of their hydrogen envelopes during the red-giant phase, and are now burning their helium-rich core [1]
- found in both the thin and the thick discs, and in the bulge and halo populations of the Galaxy [2]
- spectroscopically classified as either sdB, with Teff < 38 kK, or sdO, with Teff > 38 kK
- 4-6.5)

intrinsic or due to accretion onto a compact companion star

EPIC spectra of the sdO stars

In all cases the observed spectrum can be described as the sum of two or three thermal plasma models (APEC) with different temperatures:

Parameter	HD49798	BD +37° 442	BD +37° 1977	Feige 34
kT_1 (keV)	0.11	0.11	0.13	0.30
kT_2 (keV)	0.57	0.65	0.79	1.10
kT_3 (keV)	4	-	-	-

Summary of X-ray spectral analysis

Sum of thermal plasma models with different temperatures: emission model commonly used to describe the X-ray spectrum of normal O-type stars

BUT

for the luminous He-rich stars:

• spectral fit with a multi-temperature thermal plasma model obtained considering the specific abundance of each element obtained from the spectroscopic analysis in the optical / UV domain

consistent with the hypothesis that the observed X-ray emission originates from the hot plasma in the stellar wind for Feige 34:

- acceptable fit only possible with subsolar metallicity, with the relative elemental abundances kept solar
- unsuccessful spectral fit with a multi-temperature thermal plasma model assuming the specific elemental abundances obtained from optical/UV data

Parameter	HD49798	BD +37° 442	BD+37° 1977	Feige 34	BD+28° 4211
Spectral type	sdO6	sdO9	sdO5	sdOp	sdO2
$\log g \ (\mathrm{cm \ s^{-2}})$	4.35	4.00±0.25	4.00	5.99	6.2 ^{+0.3} -0.2
$T_{\rm eff}$ (kK)	46.5	48	48	62.5	82±5
U	6.76	8.57	8.67	9.61	8.92
В	8.02	9.73	9.93	10.91	10.25
\boldsymbol{V}	8.29	10.01	10.17	11.14	10.58
<i>d</i> (pc)	500 ⁺¹⁷ -16	1230+320	1200^{+180}_{-140}	226±5	113.3 ^{+1.6} -1.4
$L_{ m bol}~(L_{ m o})$	8300	9500	4900	160	90
$v_{\rm W}$ (km s ⁻¹)	1200	2000	2000	-	-
$\log \dot{M}_{ m W} \left(M_{\odot} \ { m yr}^{-1} ight)$	-9.2	-8.5	-8.2	-10	-
$f_{\rm x} ({\rm x10^{-14}~erg~cm^{-2}~s^{-1}})$	9.2±0.7	3. 4 ^{+0.3} -0.1	$4.0^{+0.2}$ -0.3	$3.4^{+0.5}_{-0.4}$	$1.3^{+0.6}_{-0.5}$
$L_{\rm x} ({\rm x10^{30}~erg~s^{-1}})$	2.6 ± 0.2	5.8+4.2	6.5 ^{+2.5} -1.8	0.20+0.03-0.04	0.019 ^{+0.009} -0.008
$\log(L_{\rm x}/L_{\rm bol})$	-7.09±0.03	-6.80 ^{+0.04} -0.01	-6.46 ^{+0.02} -0.03	-6.48±0.06	$-7.28^{+0.17}_{-0.23}$
X_{He} (mass fraction)	0.78	0.96	0.96	0.06	0.28

need of an alternative hypothesis

Alternative hypothesis for Feige 34

- X-ray emission (or at least part of it) due to the late-type companion of M0 stellar type (inferred from the IR excess in the spectral energy distribution [12])
- Late-type MS stars: a well-known class of X-ray sources since the epoch of the *Einstein* satellite [13,14]
- X-ray emission due to the effect of magnetic heating of the coronal plasma (at temperatures T > 1 MK) [15,16]
- *Einstein* results: spectra of most stars well described with a two-temperature (2T) thermal-plasma model with $kT_1 =$ 0.22 keV and $kT_2 = 1.37$ keV [17]
- XMM-Newton Bright Serendipitous Survey (XBSS): spectra of moderately active K and M-type stars described with a 2T model with $kT_1 = 0.32$ keV and $kT_2 = 0.98$ keV [18]

For Feige 34:

- Spectrum: 2T thermal-plasma model with $kT_1 = 0.3$ keV and $kT_2 = 1.1 \text{ keV}$
- $L_{\rm X} = 2 \times 10^{29} \text{ erg s}^{-1} \Rightarrow$ consistent with X-ray luminosity of young M0 stars [19,20,21]
- $L_X / L_{bol} = 10^{-3.1} \Rightarrow$ consistent with X-ray-to-bolometric ratio of young M0 stars [22,23,24]

Conclusions and perspectives

Conclusions:

- No acceptable spectral fit when the proper elemental abundances of Feige 34 are taken into account (contrary to the case of luminous He-rich sdO stars)
- Presence of a late-type companion star of M0 spectral type suggested by the IR excess observed in the SED of Feige 34
- Properties of the observed X-ray emission consistent with those typical of young M-type stars
- sdO star Feige 67, very similar to Feige 34, undetected in our programme of snapshot observations of sdO stars performed with Chandra [7]
 - our results favour the possibility that the main source of the observed X-ray emission is the companion late-type star
- (although we cannot exclude a contribution from the sdO star)
- **Perspectives:**
- to perform a follow-up observation with XMM-Newton of also BD+28° 4211
- to use the Gaia results for the selection and observation of possible X-ray emitting sdO stars [25]
- \circ > 600 candidate sdO/He-sdO stars
- $\circ \sim 60$ candidate sdO/He-sdO stars at d < 1 kpc

References

[1] Heber U. 2016, PASP 128, 082001 [2] Geier S. et al. 2017, Open Astronomy 26, 164 [3] Mereghetti S. et al. 2013, A&A 553, A46 [4] Mereghetti S. et al. 2017, MNRAS 466, 2918 [5] La Palombara N. et al. 2015, A&A 580, A56

[6] La Palombara N. et al. 2019, A&A 626, A29 [7] La Palombara N. et al. 2014, A&A 566, A4 [8] Berghoefer T.W. et al. 1996, A&AS 118, 481 [9] Nazé Y. 2009, A&A 566, 1055 [10] Owocki S. P. et al. 2013, MNRAS 429, 3379 [11] Cohen D.H. et al. 2014, MNRAS 439, 908 [12] Latour M. et al. 2018, A&A 609, A89 [13] Pallavicini R. et al. 1981, ApJ 248, 279 [14] Vaiana G.S. et al. 1981, ApJ 245, 163 [15] Güdel M. 2004, A&ARv 12, 71 [16] Güdel M. & Nazé M. 2009, A&ARv 17, 309 [17] Schmitt J.H.M.M. et al. 1990, ApJ 365, 704 [18] López-Santiago J. et al. 2007, A&A 463, 165 [19] Pizzolato N. et al. 2003, A&A 397, 147 [20] Garcés A. et al. 2011, A&A, 531, A7 [21] Stelzer B. et al. 2013, MNRAS, 431, 2063 [22] Zickgraf F.J. et al. 2005, A&A 433, 151 [23] Stelzer B. et al. 2016, MNRAS, 463, 1844 [24] Kastner J.H. et al. 2016, AJ 152, 3 [25] Geier S. et al. 2019, A&A 621, 38

X-ray Astronomy 2019

Bologna (I), 9-13 september 2019

