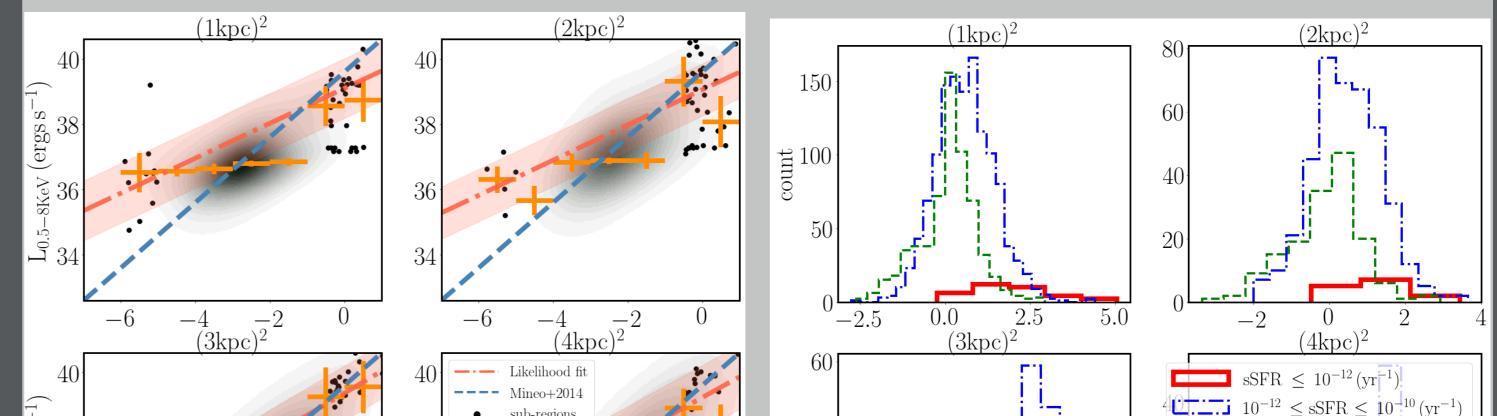


erc

Probing the building blocks of galaxies: sub-galactic scaling relations between X-ray luminosity, SFR and stellar mass Konstantinos Kouroumpatzakis ^{1,2}, Andreas Zezas ^{1,2,3}, Paul Sell ^{1,2}, Konstantinos Kovlakas ^{1,2}, Paolo Bonfini^{1,2}, Steven Willner ³, Matt Ashby ³

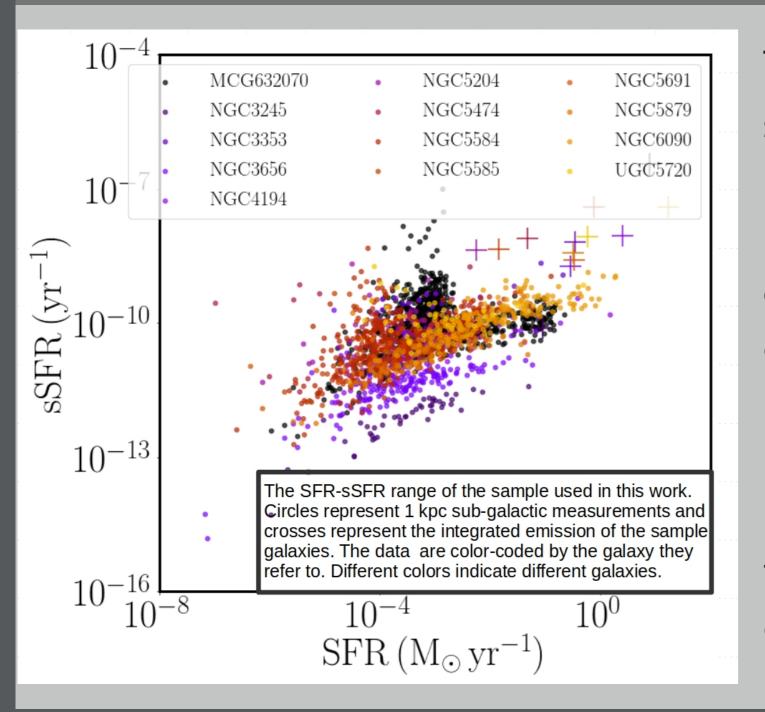
Greece, ³Harvard-Smithsonian Center for Astrophysics, Cambridge, MA



Abstract

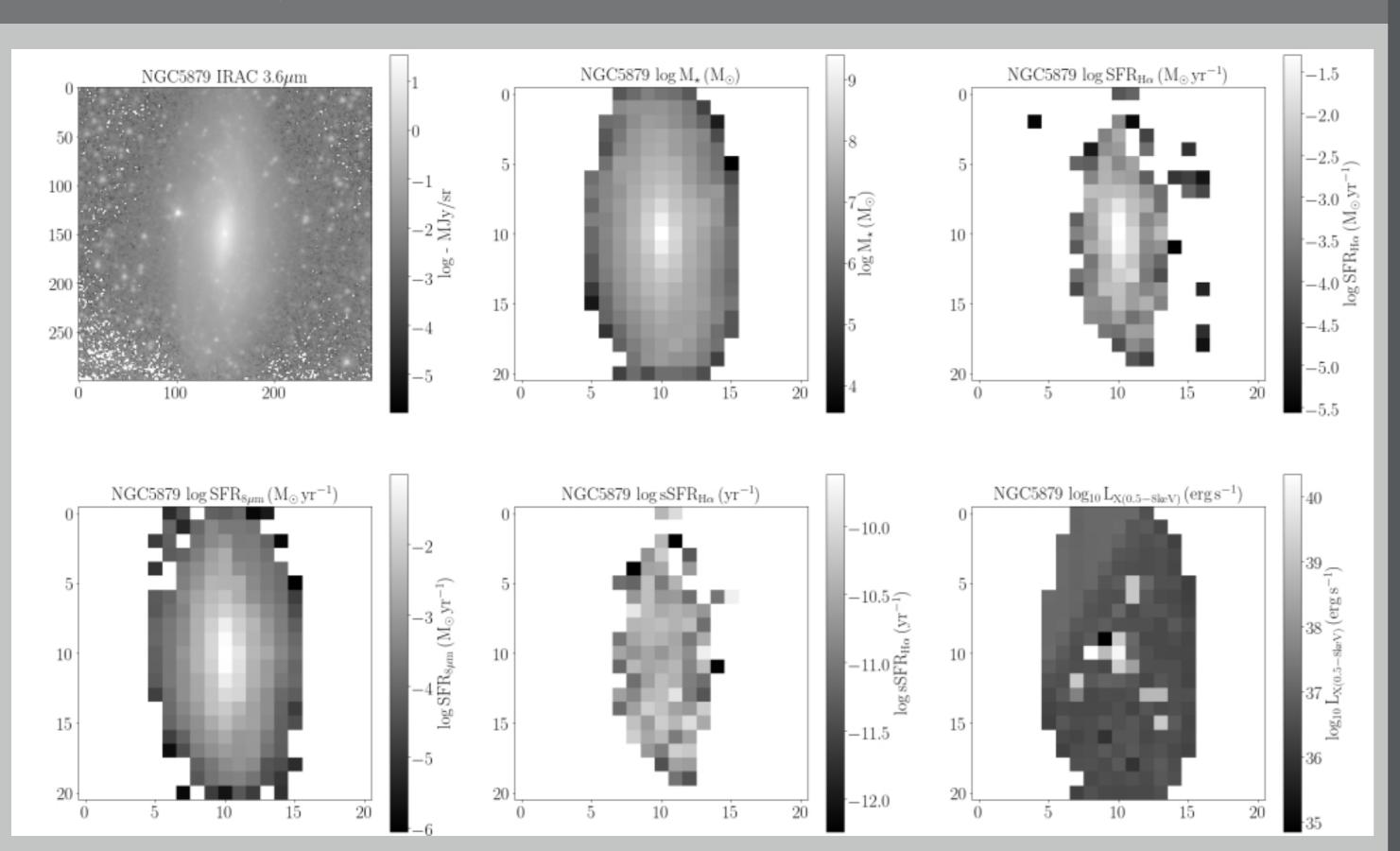
It is well known that X-ray luminosity (L_X) originating from high mass X-ray binaries (HMXBs) is tightly correlated with the host galaxy's star formation rate (SFR). We explore this connection using a sample spanning \sim 4 dex in SFR and \sim 3 dex in specific SFR (sSFR) along with a comprehensive set of star-formation (24 μ m, 8 μ m, H α), stellar mass (3.6 μ m) indicators, and Chandra observations. We investigate the L_X – SFR and L_X– stellar mass (M_{*}) scaling relations down to sub-galactic scales of 1 kpc². This way we

Results: Max. likelihood fits & X-ray luminosity excess in low SFR


examine these correlations to extremely low SFR (~ $10^{-6}M_{\odot} \cdot yr^{-1}$) and M_{\star} (~ $10^{4}M_{\odot}$). We find good agreement with established relations down to $SFR \sim 10^{-3}M_{\odot} \cdot yr^{-1}$ and an excess of L_X for lower values. We finally show evidence that the excessive L_X is attributed to low mass X-ray binaries (LMXBs). We also find that the intrinsic scatter of the $L_X - SFR$ relation is not correlated with SFR.

$\leq \text{sSFR} \leq 10$ $10^{-10} \le \text{sSFR} (\text{yr}^{-1})$ ergs 38 38 : ... -2.52.50.0 -5.0-2 0 -2-4-4Excess $L_X (\log - \operatorname{ergs} s^{-1})$ Excess $L_X (\log - \operatorname{ergs s}^-)$ $SFR_{24\mu m}$ (M_{\odot} yr⁻¹) $\mathrm{SFR}_{24\mu\mathrm{m}}\,(\mathrm{M}_{\odot}\,\mathrm{yr}^{-1})$

Results:


- L_X against 8 μ m-based SFR for $(1, 2^2, 3^2, \text{ and } 4^2 \text{ kpc}^2)$ sub-galactic regions (all regions in all 13 galaxies are included in the density plot). The points with errobars represent the L_X distribution of the regions in 1 dex SFR bins. The red line show a max. likelihood fit to the $logL_X = \alpha logSFR + \beta$ relation, which is flatter than the [4] relation ($\alpha = 1$). The red shaded areas represent the 67.8 percentile of the calculated scatter.
- Excess of L_X with respect to the [4] relation. The histograms show the distribution of L_X excess for sub-galactic regions of $1, 2^2, 3^2$, and 4^2 kpc^2 grouped according to their sSFR.
- ▶ We find dependence of α and β on the SFR indicator, with H_{α} being closer to linear slope. This can be attributed to the fact that H_{α} is tracing younger stellar populations, similar to the HMXBs formation time-scales [2].
- ► We fit $logL_X = \alpha logSFR + \beta + \sigma$ in order to quantify the scatter in the

Sample

The sample used for this work consists of 13 star-forming (non-AGN)Star-Formation Reference Survey (SFRS, [1]) galaxies that have *Chandra* data of adequate quality to study the X-ray emission down to 1 kpc² scales. The integrated emission of the sample galaxies spans \sim 4 dex in the SFR and \sim 3 dex in sSFR. In sub-galactic scales these ranges become \sim 6 dex and \sim 5 dex in SFR and sSFR respectively.

Base of analysis

In order to probe the correlations between SFR, stellar mass and the X-ray emission in sub-galactic scales we create grids of different physical scales $(1, 2, 3, \text{ and } 4 \text{ kpc}^2)$. Then we apply the same grids on the IRAC 3.6 μ m data (used to measure the stellar mass), the H α , IRAC 8 μ m, and MIPS 24 μ m data (used to measure the SFR), and the *Chandra* data in the soft (0.5 - 2.0 keV), hard (2.0 - 8.0 keV), and total (0.5 - 8.0 keV) bands. From these grids we generate stellar mass, SFR, sSFR, and L_X maps which we use to correlate these parameters in each sub-galactic region. Here as an example we see the IRAC 3.6 μ m data and the $1 \text{ kpc}^2 \text{ M}_{\star}$, H α based SFR, 8 μ m based SFR, specific SFR, and the totalL_X maps of the galaxy NGC5879.

relation, where $\sigma = \sigma_1 + \sigma_2 SFR$. We find no significant dependence of σ on SFR ($\sigma_2 \simeq 0$).

► We fit an $L_X = 10^{\alpha}SFR + 10^{\beta}M_{\star}$ model to our data in order to quantify the dependence of L_X on SFR and M_{\star} . We find varying results depending on the SFR indicator and physical scale of the analysis, with the larger scales converging to the integrated-galaxy relations.

Conclusion

- ▶ We extend the $L_X SFR$ correlation down to extremely low SFR (SFR ~ $10^{-6} M_{\odot} yr^{-1}$), relevant also for dwarf galaxies.
- ► We find a shallower slope in the $L_X SFR$ correlation in all sub-galactic scales (1, 2², 3², and 4² kpc²) and by all the SFR indicators (H α , 8 μ m, 24 μ m) used in this project.
- ▶ This shallower slope is driven by an excess of L_X in the extremely low SFR regime (SFR $\leq 10^{-2} M_{\odot} yr^{-1}$).
- \blacktriangleright The excess of L_X in the low SFR regime can be attributed to underlying emission of LMXBs.
- ▶ There is a systematic difference in the $L_X SFR$ correlation between the the different SFR indicators. This can be attributed to the fact that the different indicators have varying sensitivity to stellar populations of different

Contact Information

Email: kkouroub@physics.uoc.gr
 Phone: Phone:+30-2810-39-4238
 Web: astro.physics.uoc.gr

age [3], with H_{α} being closer to linear slope.

► We show that the intrinsic scatter of the L_X - SFR correlation is not correlated with SFR.

References

 Ashby, M. L. N., Mahajan, S., Smith, H. A., Willner, S. P., Fazio, G. G., Raychaudhury, S., Zezas, A., Barmby, P., Bonfini, P., Cao, C., González-Alfonso, E., Ishihara, D., Kaneda, H., Lyttle, V., Madden, S., Papovich, C., Sturm, E., Surace, J., Wu, H., and Zhu, Y.-N. (2011). The Star Formation Reference Survey. I. Survey Description and Basic Data. *PASP*, 123:1011.
 Fragos, T., Lehmer, B., Tremmel, M., Tzanavaris, P., Basu-Zych, A., Belczynski, K., Hornschemeier, A., Jenkins, L., Kalogera, V., Ptak, A., and Zezas, A. (2013). X-Ray Binary Evolution Across Cosmic Time. *ApJ*, 764:41.
 Kennicutt, R. C. and Evans, N. J. (2012). Star Formation in the Milky Way and Nearby Galaxies. *ARA&A*, 50:531–608.
 Mineo, S., Gilfanov, M., Lehmer, B. D., Morrison, G. E., and Sunyaev, R. (2014). X-ray emission from star-forming galaxies - III.

Calibration of the L_X-SFR relation up to redshift $z \approx 1.3$. *MNRAS*, 437:1698–1707.

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 617001'