ATHENA.

Athena: The ESA Mission to explore the Hot and Energetic Universe

* http://www.the-athena-x-ray-observatory.eu/

X-ray Astronomy 2019 Bologna

Kirpal Nandra Max Planck Institute for Extraterrestrial Physics

On behalf of the Athena Science Study Team (ASST)* and Working Groups

*Didier Barret, Anne Decourchelle, Andy Fabian, Jan-Willem den Herder, Hiro Matsumoto, Luigi Piro, Randall Smith, Dick Willingale + Matteo Guainazzi (ESA Chair) Additional inputs from M. Bavdaz (ESA), M. Collon (cosine)

X-Ray Astronomy Bologna 1989

Poster: The X-ray spectrum of MCG-6-30-15

Nandra, K., Pounds, K.A., Stewart, G.C., George, I.M., Fabian, A.C., 23rd ESLAB symposium on two topics in X-ray astronomy, ed. J. Hunt, B. Battrick, ESA SP-296, Vol. 2, p. 1021.

The Hot and Energetic Universe

- Key Questions:
 - How does ordinary matter assemble into the large-scale structures we see today?
 - How do black holes grow and shape the Universe?
- Requires sensitive high resolution X-ray spectroscopy and deep wide field imaging
- Science theme selected by ESA in 2013 based on Senior Survey Committee recommendation
- Athena selected in 2014 as next large mission of ESA's Cosmic Vision program

The Hot Universe

- How does ordinary matter assemble into the largescale structures that we see today?
 - The quest for early galaxy groups @ z>2
 - Thermal history of hot baryons in clusters up to z~2
 - Chemical evolution of cluster gas
 - AGN feedback on cluster scales

Counts/s/ke/

Missing baryons in the Warm
 & Hot Intergalactic Medium

The Energetic Universe

- How do black holes grow and influence the Universe?
 - The early history of SMBH growth at z>6
 - Obscured AGN census z~1-3
 - SMBH outflows z~0-3
 - SMBH growth: accretion vs. mergers
 - BH & SMBH accretion physics
 - Luminous extragalactic transients

Black Holes in the Early Universe

Only most luminous, massive QSOs seen in opt/IR surveys

X-rays needed to signpost typical and obscured AGN

Aird, Comastri et al. 2013 arXiv1306.232 Updated by Andrea Merloni (MPE) (2017)

X-ray luminosity

The first stars and black holes

Fast response to transients opens up new window to early Universe

MISSION AS PROPOSED

The Athena Observatory

L2 orbit Ariane V Mass < 5100 kg Power 2500 W 5 year mission

X-ray Integral Field Unit: ΔE: 2.5 eV Field of View: 5 arcmin Operating temp: 50 mk Barret et al., 2013 arXiv:1308.6784

Willingale et al, 2013 arXiv1308.6785

Silicon Pore Optics: 2 m² at 1 keV 5 arcsec HEW Focal length: 12 m Sensitivity: 3 10⁻¹⁷ erg cm⁻² s⁻¹

Wide Field Imager:ΔE: 125 eVField of View: 40 arcminHigh countrate capability

Rau et al. 2013 arXiv1307.1709

The Athena Observatory

Athena: a revolutionary observatory

Athena has vastly improved capabilities compared to current or planned facilities, and will provide **transformational** science on virtually all areas of astrophysics

X-ray spectroscopy at the peak of the activity of the Universe

Deep survey capability into the dark ages and epoch of reionization

WFI Status

- Successful I-PRR completed Dec 2018. Instrument in Phase B.
- DEPFET Sensor manufacture and performance:
 - Prototype performance demonstrated, flight-like DEPFETs manufactured
- Real-time performance of frame processor
 - Demonstrated via event emulator and lab breadboard
- Flight-worthiness of large, thin-filter assembly (CBK, Palermo)
 - Acoustic noise tests successful!

Flight-like DEPFETs

FPM breadboard PI: K. Nandra (MPE)

Acoustic Noise tests

X-IFU Status

- Successful I-PRR completed April 2019
- Baseline instrument and cryogenic chain shown to be feasible (e.g. mass, power, redundancy)
- Spectral resolution 2.6 eV (9 pixel multiplex) demonstrated
- Further optimizations ongoing

Credit: CNES/X_IFU team PI: D. Barret (IRAP)

Silicon Pore Optics (SPO)

- Innovative technology using robotic stacking of high-fidelity Si plates
- Lightweight, high throughput, good angular resolution
- Key optics requirements:
 - 5" HEW on-axis, <10" @ 15'
 - 1.4 m² effective area @ 1 keV
- Recent (10-plate) HEW measurements:
 - <12" HEW for 100% of area</p>
 - 8.0" HEW for 70% area
 - 5.0" HEW for 10% of area

Willingale et al 2013, arXiV: 1308.6785 Bavdaz et al. 2018, Proc. SPIE Collon et al. 2019, Proc. SPIE

cosine

SPO Angular Resolution progress

34-plate Performance

- Restarted process to make 34 plate middle radius XOUs
 - During SPOHO had focused on 10 plate stacks
- 34 plate stacks performance rapidly improving, XOU-0078 best to date
 - XOU-0078 has a number of known defects (wedge bias, curvature)
- Note that bad sides can be removed (see later in this presentation)
 - 70% to become new 100% reference

Number of plates	HEW 100% [1, 32]	HEW 70% [5, 26]	HEW 30% [10, 20]	HEW 10% [12, 14]
34	13.9	10.2	9.5	7.1
20	12.2	9.1	8.7	5.8
10	12.3	9.6	9.5	6.0

cosine

SPO Angular Resolution

- Much progress understanding issues affecting HEW
- Axial edge effects can be addressed by cutting away areas of poor performance: demonstrated experimentally
- Entrance and exit effects (e.g. anticlastic curvature) being studied intensively
 Cosine

Mirror Design and Effective Area

- Current reference mirror design has 15 SPO rows
- Critical Issues for mirror performance
 - Packing scheme, stack size, inner and outer radii
 - Rib Pitch: 1mm baseline; >2mm greatly improves performance
 - Coatings: optimal B4C difficult, alternatives being investigated
 - Stray Light Baffling: large effect off-axis, mitigation under study

The Athena Community Structure

Total ~800 members with roughly annual call Supported by Athena Community Office@IFCA, Spain (F. Carrera)

Athena Synergy Exercises

ESO-Athena Synergy White Paper ATHENA. Chair: P. Padovani Chair: R. Cassano **SKA-Athena Synergy White Paper SKA-Athena Synergy Team** Athena-LISA Synergies Athena-LISA Synergy Working Group: Monica Colpi, Andrew C. Fabian, Matteo Guainazzi, Paul McNamara, Luigi Piro, Nial Tanvir (with contributions by J.Aird, A.Klein, A.Mangiagli, E.M.Rossi, A.Sesana) 20 February 2019

Next Synergy activities already in progress:

- Multi-messenger and gamma-ray (L. Piro)
- LSST/wide area surveys (M. Watson)

Athena: Summary

- Athena addresses key questions in high energy astrophysics via high resolution spectroscopy and wide-field imaging
- Flagship observatory with capabilities far exceeding current facilities in many respects

Schedule and Milestones

- Instrument Consortium Consolidation, teams confirmed Dec 2018
- WFI Instrument I-PRR successfully completed Dec 2018
- X-IFU I-PRR successfully completed in April 2019
- Mission Formulation Review (MFR) just started; ends Phase A
- Mission Adoption Review (MAR) Nov 2021; ends Phase B1
- Launch currently expected ~2031

X-Ray Astronomy Bologna 1989

State of the art X-ray astronomy

X-Ray Astronomy Bologna 2039

State of the art X-ray astronomy

