The IGM at High Spectral Resolution

Physics, Metallicity and Kinematics of the Universe's Missing Mass with Future Spectrometers

F. Nicastro (INAF - OAR)

Y. Krongold, J. Kaastra, F. Senatore, S. Borgani, E. Branchini, R. Cen, M. Dadina, C. Danforth, M. Elvis, F. Fiore, A. Gupta, S. Mathur, D. Mayya, F. Paerels, L. Piro, D. Rosa-^{9/6/19} Onzales, J. Schaye, M. Shull, J. Porres-Zaira, N. Wijers, L. Zappacosta

Outline

- The Missing Baryon Problems
 The Colour's Missing Demonstration
- The Galaxy's Missing Baryons
- The Missing Baryons in a WHIM
- From current to next generation X-ray spectrometers.

Where have all the baryons gone?

9/6/19

Why do we care?

The Eagle simulations

Gas distribution in a cosmological volume (colour encodes metallicity)

Temperature

Metallicity

Schaye et al. (2015)

Close to the nodes: Galaxy growth and IGM/CGM-Galaxy Feedback

The Milky Way's Baryon Problem

- $(M_b)^{Obs} = 6.5 \times 10^{10} M_{\odot}$ (McMillian & Binney, 2012)
- $M_{DM} = (1-2)x10^{12} M_{\odot}$ (Boylan-Kolchin+12)
- f_b = 0.157 (The Plank Collaboration, 2015)

→
$$M_b/(M_b)^{Obs} \approx 2.5-5$$

$$M_b^{Missing} \approx (1.5-3) \times 10^{11} M_{\odot}$$

Milky Way: Gaseous baryons in all phases ISM/CGM Spectrum

XMM-Newton RGS Spectrum of Mkn 421 (z=0.03) Nicastro+19, in prep.

CNMM and LIMM are (mostly) confined in the thin and thick disks.

Where is the HIMM?

X-Ray Astronomy 2019: Bologna 2019 (F. Nicastro)

Hot Plasma Permeates a Large Galactic Volume

 $\langle N_{OVII}(LGL) \rangle = (2.3^{+1.4}_{-1.2}) \times 10^{16} \text{ cm}^{-2}; \langle b_{OVII}(LGL) \rangle = (110^{+50}_{-40}) \text{ km s}^{-1}$

 $\langle N_{OVII}(HGL) \rangle = (8 \pm 2)x10^{16} \text{ cm}^{-2}; \langle b_{OVII}(HGL) \rangle = (100 \pm 50) \text{ km s}^{-1}$

→ The HIMM permeates both the Galactic Disk and Halo

HIMM: at least 2 Phases

Two Distinct Components both in the Disk and the Halo 1. Warm (OVI-traced): T~4x10⁵ K (if coll. lonized) 2. Hot (OVII,OVIII-traced): T~2x10⁶ K (MW Virial Temperature)

The Galaxy's Gaseous Baryons Summary

- Million-degree Gas permeates both the Disk and Halo of our Galaxy and co-exist with dense cold and cool gas
- Feedback in action: a spherically symmetric structure in the density profile of the million-degree halo gas tracks the current position of a shock-front generated 6 Million years ago by an energetic outflow powered by an AGN-like accretion episode
- The Mass of the OVII-bearing Gas may be sufficient to close the Galaxy's Baryon Census

The Universe Missing Baryons

(Nicastro et al., 2018, Nature, 558, 406)

26-32 Å RGS Spectra

X-Ray Astronomy 2019: Bologna 2019 (F. Nicastro)

Diagnostics & Galaxy Association

Z	Т	No	$N_{\rm H}(Z/Z_{\odot})^{-1}$	Z
	(10 ⁶ K)	(10 ¹⁵ cm ⁻²)	(10 ¹⁹ cm ⁻²)	(Z _☉)
0.4339	1.0,-0.4,+0.9	3.5,+2.5,-1.5	0.7,+0.5,-0.3	>0.05
0.3551	0.95±0.45	$4.4^{+2.4}_{-2.0}$	$0.9^{+0.5}_{-0.4}$	≥0.1

Physical parameters all in excellent agreement with WHIM predictions

z=0.4339: CGM of an i'=19.6 spiral at IP=129 kpc z=0.3551: low-density photoionized IGM in a void

z=0.3551: Photoionized IGM

Short-term Future: XURBE (XMM-Newton Ultimate Roaming baryon Exploration)

XMM-Newton can provide invaluable contribution by:

observing (in a multi-cycle program) 6 opportunely selected, additional lines of sight to cover a total Δz =3.5 (cf. with explored Δz =0.4) down to a 3 σ sensitivity of EW_{rf}(OVIIK α)>9 mÅ, in a total of 4.85 Ms (cf. with 1.9 Ms on 1ES 1553+113)

This would allow us to:

(1) effectively address WHIM cosmic variance over ~130 independent LSS elements;

- (2) measure dN/dz(EW_{rf} > 9) and $\Omega_{b}(\log T \sim 6)$ with precisions of 15-40%;
- (3) study the galaxy-environment around OVII-WHIM intervening absorbers;
- (4) refine theoretical predictions.

Long-term Future: Athena X-IFU (2030)

a Transition Edge Sensor (TES) microcalorimeter array with 3840 single pixels

Parameters	Requirements		
Energy range	0.2 - 12 keV		
Energy resolution ¹ : $E < 7 \text{ keV}$	2.5 eV		
Energy resolution: $E > 7 \text{ keV}$	$E/\Delta E = 2800$		
Field of View	5′ (equivalent diameter)		
Effective area @ 0.3 keV	$> 1500 \text{ cm}^2$		
Effective area @ 1.0 keV	$> 15000 \text{ cm}^2$		
Effective area @ 7.0 keV	$> 1600 \text{ cm}^2$		
Gain calibration error (RMS, 7 keV)	0.4 eV		
Count rate capability – nominally bright point sources ²⁾	1 mCrab (> 80% high-resolution events)		
Count rate capability – brightest point sources	1 Crab $(> 30\%$ throughput)		
Time resolution	$10 \ \mu s$		
Non X-ray background (2-10 keV)	$<5\times10^{-3}~{\rm counts/s/cm^2/keV}$ (80% of the time)		

The Voyage of Metals in the Universe from Cosmological to Planetary Scales

the need for a Very High-Resolution, High Throughput Soft X-ray Spectrometer

5 Mpc

Gas metallicity (Eagle)

FoM: (A_{eff}xR)^(1/2)

Mission	Instrument	$A_{\rm eff}~({\rm cm}^2)$	R	FoM
HiReX		1 500	10 000	≡ 1
Chandra	LETGS	12	500	0.02
XMM-Newton	RGS	90	400	0.05
XRISM	Resolve	125	100	0.03
Athena	X-IFU	5 900	200	0.28

Athena: No. of Systems

160 ks Athena-XIFU on 1ES 1553+113

Athena will detect about 200 filaments against bright AGNs and GRBs

The WHIM in Eagle with Athena & HiReX

Cold Cloud Traveling in Hot Halo

X-Ray Astronomy 2019: Bologna 2019 (F. Nicastro)

The Multiphase LLS-CGM with Athena & HiReX

```
LLS System in Lehner+13 at z=0.1672; v_{rel} = 150 km s<sup>-1</sup>
```


Summary

- The first data confirm predictions: missing baryons to be found in Hot Intergalactic/ Circumgalactic Enriched Plasma
- Athena (2032) will make a tomography of the WHIM and will detect ~200 filaments.
- Strong synergies with mm/O/IR will allow us to (a) identify WHIM-galaxy associations and map the structure of galaxy (and so DM) clustering; (b) study the interplay between galaxy and AGN outflows and the IGM (feedback)
- To study the physical, kinematical and chemical details of the IGM/CGM, higher resolutions are needed (ESA White-Paper for VOYAGE-2050 Science Themes)