The FORCE mission: A future Japan-lead mission for broadband X-ray imaging spectroscopy with high-angular resolution

Koji Mori (University of Miyazaki, Japan),

T.G. Tsuru (Kyoto), T. Nakazawa (Nagoya), Y. Ueda (Kyoto), M. Ishida (ISAS/JAXA), H. Murakami (Tohoku Gakuin), H. Awaki (Ehime), H. Matsumoto (Osaka), T. Tanaka (Kyoto), M. Nobukawa (Nara edu), A, Takeda (Miyazaki),
Y. Fukazawa (Hiroshima), H. Tsunemi (Osaka), T. Takahashi (Kavli IPMU/Tokyo), and
A.C. Hornschemeier, T. Okajima, W.W. Zhang (NASA/GSFC)

The FORCE mission: Focusing On the Relativistic universe and Cosmic Evolution

Koji Mori (University of Miyazaki, Japan),

T.G. Tsuru (Kyoto), T. Nakazawa (Nagoya), Y. Ueda (Kyoto), M. Ishida (ISAS/JAXA), H. Murakami (Tohoku Gakuin), H. Awaki (Ehime), H. Matsumoto (Osaka), T. Tanaka (Kyoto), M. Nobukawa (Nara edu), A, Takeda (Miyazaki),
Y. Fukazawa (Hiroshima), H. Tsunemi (Osaka), T. Takahashi (Kavli IPMU/Tokyo), and
A.C. Hornschemeier, T. Okajima, W.W. Zhang (GSFC/NASA)

FORCE Working Group member

- H. Murakami (Tohoku Gakuin)
- S. Nakashima (RIKEN)
- Y. Terada (Saitama)
- T. Takahashi (Tokyo/IPMU)
- Y. Uchiyama (Rikkyo)
- A. Bamba, H. Odaka (Tokyo)
- A. Kubota (Shibaura tec)
- Y. Yatsu (Tokyo tec)
- T. Kohmura, K. Hagino, S. Kobayashi (Tokyo sci)
- T. Kitayama (Toho)
- M. Ishida, S. Watanabe, R. Iizuka, H. Yamaguchi (ISAS/JAXA)
- H. Nakajima (Kanto Gakuin)
- K. Nakazawa (Nagoya)
- A. Furusawa (Fujita Hoken Eisei)
- T.G. Tsuru, Y. Ueda, T. Tanaka, H. Uchida (Kyoto)
- M. Itoh (Kobe)
- M. Nobukawa (Nara edu)
- K. Nobukawa (Nara women's U)
- H. Matsumoto, H. Noda, H. Tsunemi (Osaka)
- Y. Fukazawa, T, Mizuno, H. Takahashi, M. Ohno (Hiroshima)
- H. Awaki, Y. Terashima (Ehime)
- K. Mori, A. Takeda (Mlyazaki)
- A.C. Hornschemeier, T. Okajima, W.W. Zhang, H. Mori, B.J.Williams (GSFC/NASA)

Scientific Objectives

- Our primary scientific objectives are
 - to search for "missing black holes" in entire mass-scales and to trace their cosmic evolution, and
 - to investigate the acceleration mechanism of relativistic particles at various astrophysical shocks

Resolving the CXB and constraining the SMBH growth

- The CXB peaks at around 30 keV where heavily-obscured AGNs significantly contribute
- The heavily-obscured, Compton-thick AGNs has barely been resolved by soft X-ray survey below 10 keV
- A sensitive hard X-ray survey is strongly demanded to understand the entire CXB spectrum and also the SMBH growth

Cosmic-ray acceleration in supernova remnants

Bamba+03, 05, Uchiyama+07

- Hard X-ray imaging above the synchrotron cut-off energy (>10keV)
 - sensitive to the maximum-energy gained particles
 - Even small Emax variation leads to large flux variation in this band
 - Spatial resolved evaluation of B and ΔB

W49B: non-thermal and thermal emission in the hard X-ray band

- Discovery of non-thermal emission and spatial variation of the RRC components from W49B with NuSTAR (Tanaka+18, Yamaguchi+18)
- flat spectrum (Γ~1.4), good for hard X-ray observations
 - likely non-thermal electron bremsstrahlung from sub-relativistic particles
- Strong RRC emission is a sign of recombination plasma, which is a new tool to study how SNRs evolves

Mission Requirement

- High sensitivity in Hard X-ray
 - 2-3x10⁻¹⁵ erg/s in 10-40 keV
- Broadband response
- Effective area comparable with or larger than that of NuSTAR

Table 2: Performance Parameters			
Parameter	FORCE	NuSTAR	ASTRO-H (HXT & HXI)
angular resolution (HPD)	<15"	58"	1.7'
bandpass (keV)	1-80	3-79	5-80
effective area $(cm^2@30 \text{ keV})$	>350	comarable with HXI	338
fov (50% resp. @30 keV)	>7'×7'	$\sim 10' \times 10'$	$\sim 6' \times 6'$
timing resolution	several \times 10 μ s	$2 \ \mu s$	several \times 10 μ s
energy resolution	<300 eV at 6 keV	400 eV at $10 keV$	900 eV at $14 keV$
(FWHM)	comparable with HXI	$900~{\rm eV}$ at $68~{\rm keV}$	$1500~{\rm eV}$ at $60~{\rm keV}$

Why less than 15"

- A sensitivity limit of 2-3x10⁻¹⁵ erg/cm²/s is our goal
 - Confusion limit determined the sensitivity assuming the A-H HXI BG level, which requires <15"
 - equivalent to 80% resolution of CXB in 10-40 keV
- 1 Ms exposure is necessary for one-pointing
 - Considering Vignetting effect, the number could be double, 2Ms = 1.7month
 - 360 arcmin² / 7'x7' \approx 7 pointings \approx 1yr

Starburst Galaxy, clouded with X-ray point sources including ULXs

<mark>3-7 keV</mark> 7-10 keV 10-20 keV

- NGC 253, bright, nearby, and one of the best-studied starburst galaxies
- Left shows 495 ks NuSTAR image while right shows ~400 ks FORCE image as expected from the current design

2019/9/8-13

X-ray Astronomy 2019

FORCE satellite

- Focal length 10 m
- 3 identical pairs of supermirror and detector

Wideband Hybrid X-ray Imager (WHXI)

- ✓ New Si sensor (SOI-CMOS) + CdTe hybrid
- Low BG with active shield, the same concept as the A-H's hard X-ray detector
- Wideband sensitivity of 1-80 keV

X-ray Super-mirror

 ✓ Light-weight Si mirror provided by NASA/GSFC
 ✓ Multi-layer coating directly on the Si mirror surface

angular resolution of <15" in hard X-ray

Wide-band Hybrid X-ray Imager

• Si + CdTe Hybrid detector with active shield

- The same concept as ASTRO-H HXI, low cost and low risk

- Replacing Si top layer from strip detector to SOI-CMOS pixel sensor
 - Low readout noise could be achievable, lowering the enregy threshold down to 1 keV
 - similar working temperature to that of CdTe
 - anti-coincidence technique can be utilized thanks to good time resolution and self-trigger function

SOI-CMOS pixel sensor, SOIPIX

- CMOS pixel sensor with Silicon-On-Insulator (SOI) technique
 - Monolithic, thick depletion layer
- Active pixel sensor with self-trigger function
 - pile-up free and anti-coincidence with active shield
- Its fast readout allows relatively high working temperature and also hybrid design with CdTe

Athena and FORCE

- Athena and FORCE will play complementary roles to each other
- AGN survey
 - high redshift AGNs (Athena) with z>3 and low redshift AGNs (FORCE)
 - broad band spectra come into the soft X-ray band due to K-correction
- SNR spectroscopy
 - thermal (Athena) and non-thermal (FORCE)
 - high energy resolution and broad-band coverage

X-ray Astronomy 2019

Timeline of X-ray missions with focusing optics

Summary

- FORCE (Focusing On Relativistic universe and Cosmic Evolution) is a concept of next Japanesesmall class mission after XRISM, characterized by broadband (1-80 keV) X-ray imaging spectroscopy with high angular resolution (<15")
- FORCE will trace the cosmic evolution of black holes in entire mass-scales, and investigate the origin and acceleration mechanism of relativistic particles at various astrophysical shocks
- We are proposing this mission to be realized in the mid/late 2020s

May the force be with you