

Searching for high-z AGN with Chandra and with future facilities

Nico Cappelluti University of Miami

Y. Li, G. Hasinger, A. Comastri, A. Kashlinsky, F. Pacucci, Meg Urry, F. Civano, R. Hickox, R. Canning, R. Arendt, F. Pacucci, P. Natarajan

Questions for the next decade(s) in AGN demographics

- How did the first SMBHs form and grow so rapidly in the early Universe?
- What is the complete census of growing SMBHs from cosmic dawn (z ∼6) to the peak formation epoch (z ∼2) and beyond?
- How does SMBH accretion influence the growth of galaxies and large-scale structures?

Civano, Cappelluti, Hickox and Canning+19 https://arxiv.org/pdf/1903.11091.pdf

State of art of X-ray Luminosity Functions

• Still a lot to learn from the X-ray side mostly at the bright end

Finding Early BH: large volumes

Wide field surveys are needed to Sample the high-L part of the XLF

For sources missed in Optical/ NIR sources

0.5-2 keV Stripe 82 XMM (LaMassa+16)

Chandra and XMM-Newton can still fill the gap between eROSITA and pencil beam surveys with 50-100 deg² surveys like e.g

the SDSS Stripe 82

Civano, Cappelluti, Hickox and Canning+19

Challenge: Finding the needle in the haystack

Need high angular resolution

 $-0.3 \lesssim$ F200W-F444W $\lesssim 0$ and F090W-F200W $\gtrsim -0.2$ UV continuum slopes $\beta < -2$ and -1.5 < IRX < 0.

Valiante+18

Natarajan+17

How many "seeds" do we reasonably

expect to see?

See AXIS WP, Mushotzky et al. (2019)

Literature has been proposing all the possible scenarios: from and handful with JWST to 5000 deg⁻² with Athena

Realistic expectation: I-10 detections with JWST (Natarajan+17,Pacucci +19) dozens/hundreds with Lynx/ AXIS (Heiman+19,Mushotzky+19)

EBL fluctuations $\Delta F(q) = F(q) - \langle F(q) \rangle$

Using NASA Great Observatories Spitzer and Chandra

The cross-power is not explained by AGN seeds (POP III, DCBH)

CXB fluctuations with Athena.

Athena Unresolved CXB will be dominated by early BHs, regardless of their nature

Colors of the X-ray fluctuations correlating with CIB

Colors seem to indicate unobscured accretion

Li+19

Scattering of MW disk source on dust?

 $L_{X,MW} = 2x10^{39} \text{ erg/s}$

IF we distribute it uniformly in a disk of radius 15 kpc We get:

$$F_{\rm MW} \sim L_{\rm MW} \frac{1}{\pi (15 \text{ kpc})^2} \frac{1}{4\pi} \sim 3 \times 10^{-8} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ ster}^{-1}$$

Given a column density we get the reflected flux:

$$F_{\rm ref} = F_{\rm MW} (1 - e^{-N_H \sigma_T})$$

CXB vs CIB coherence requires a flux F=2x10⁻¹⁰ erg/s/cm²/sr Implying an unrealistic NH>1e22 cm-²

So to summarize our needs:

Wide fields surveys with Chandra and XMM-Newton

Large field of view sensitive to faint fluxes in the X-ray (Athena):

Background Fluctuations

High angular resolution (Lynx, AXIS):

Multi-wavelength facilities (JWST, WFIRST, LSST, E-ELT).