A Chandra and ALMA Study of X-rayirradiated Gas in the Central ~100 pc of the Circinus Galaxy

(Kawamuro et al. 2019a)

<u>T. Kawamuro (NAOJ)</u> T. Izumi, M. Imanishi (NAOJ) (red = [S II], green = Ha+[N II], blue = [O III]; Maiolino+94)

Co-evolution; AGN and SF relatoin

Understanding of the co-evolution b/w SMBHs and galaxies.

 \rightarrow Relation b/w AGN and SF activities.

- Outflows by AGN.
- X-ray irradiation by AGN.
 - → This is an un-avoidable AGN effect on the host galaxy.

Extended X-ray emission

- Chandra has revealed detailed spatial structures. (e.g., Tsunemi+01; Mori+01; Li+03,04)
- Growing number of reports of extended X-ray emission (e.g., Wang+09; Marinucci+13,17; Feruglio+19)

X-ray Irradiation of the ISM

- X-ray irradiation causes a change of the chemical composition. → X-ray Dominated Region (XDR)
- In the vicinity of an X-ray src, molecular dissociation is expected.

SF and Phases of Gas

Why do we care about the mol. gas dissociation?

- The positive correlation b/w Σmol and ΣSFR suggests a causal link b/w mol gas and the ability to form stars.
- A naive expectation is that X-ray emission can suppress SF by dissociating molecules.

Observational Test in the Circinus Galaxy

What we have done is to reveal an XDR around an AGN

Target: the Circinus galaxy

- D = 4.2 Mpc (1" ~ 20 pc).
- A Compton-thick AGN host.
 - → Good for detecting faint, extended emission.

Obs.: Chandra & ALMA

- high spatial res. (< 1").
- high penetrating power
 of X-ray & submm/mm.
 - → Good to study the dense nuclear region with the least bias.
- high S/N data.

ObsID	Obs. date (UT)	Grating	Exp.
			(ksec)
(1)	(2)	(3)	(4)
$\frac{12823}{12824}$	2010/12/17 2010/12/24	NO NO	$\begin{array}{c} 147\\ 38 \end{array}$
$62877 \\ 4770 \\ 4771$	2000/06/16 2004/06/02 2004/11/28	YES YES YES	48 48 52
Project code	Obs. date (UT)	Molecules	Exp. (min)
(1)	(2)	(3)	(4)
#2015.1.01280 (PI: F. Costag	5.S 2015/12/31 gliola)	$HCO^{+}(J=4-3)$ HCN(J=4-3) CO(J=3-2)) 3
#2015.1.01280 (PI: F. Costag	5.S 2015/12/31 gliola)	$HCO^{+}(J=3-2)$ HCN(J=3-2)) 5
#2016.1.01613 (PI: T. Izumi)	3.S 2016/11/24	$HCO^+(J=4-3)$) 125

Fluorescent Iron-K α Line as a Probe

- The iron-Kα line probes X-ray irradiation regions.
- 6.2-6.5 keV/3.0-6.0 keV ratios \rightarrow an proxy of the EW (Fe-K α)
- τ ~1 for the X-ray w/ the edge energy when log N_H/cm⁻² ~ 23.9

X-ray irradiation

- Multiple regions w/ bright Ka emission
- High EWs (> 1 keV) are consistent w/ being irradiated by an X-ray src.

0.01

10-3

10-5

2

0

-2

normalized counts s⁻¹ keV⁻¹

(data-model)/error

0.01

10⁻³

10-

CNR-E

Spatial anti-correlation b/w mol. and iron lines

- HCO+(4-3)
 - → <u>Molecular gas</u>
 - \rightarrow high critical dens.
 - = dense gas tracer
- Iron-Ka line
 - → gas irrespective of atomic/mol. phases

Spatial anti-correlation b/w mol. and iron lines

Declination

- HCO+(4-3)
 - → Molecular gas
 - \rightarrow high critical dens.
 - = dense gas tracer
- Iron-Ka line
 - \rightarrow gas irrespective of atomic/mol. phases
- Clear atomic-to-mol. transition boundaries
- Mol. dissociation ?
- Next is quantitative discussion w/ XDR model

 $\xi_{\rm eff} = L_{\rm X}/R^2 n_{\rm H2} N^{1.1}_{\rm att}$

Physical state of the ISM

Multiple mol. line detections by ALMA

Is the X-ray powerful enough?

$\begin{aligned} \xi_{eff} &= L_X/R^2 n_{H2} N^{\alpha}_{att} \\ L_X &\sim 1.3e + 43 (1 - 100 \text{ keV}) \\ \text{(NuSTAR estimate by Arevalo+14)} \\ R &\sim 60 \text{ pc} \\ \text{(spatially resolved map)} \\ n_{H2} &\sim 1e + 3.0 - 5.0 \text{ cm}^{-3} \end{aligned}$

(mol. line ratios fit by RADEX)

*N*_{att} ~ 1e+23.9 cm⁻²

(τ~1 for the neutral iron)

	Nucleus	CNR-SE	CNR-E
log ξ _{eff}	< -4.0	-4.6~-2.6	-4.0~-2.5

SF in the X-ray irradiated region

→ in-active SF in X-ray irradiate region

Summary

- AGN usually emit X-rays, and therefore the X-ray irradiation is an un-avoidable effect on the host galaxy.
- Chandra and ALMA obs. have revealed the spatial anticorrelation b/w the molecular gas and iron-Kα line emission.
- Moderately high ionization parameters are consistent with molecules being dissociated by the X-ray emission.
- The high-spatial resolution study is important.
 → We anticipate the future high spatial-resolution projects, such as MIXIM, AXIS, Lynx.