The realm of hyperluminous quasars

Zappacosta L. (INAF-OA Roma), Piconcelli E., Fiore F., Bischetti M., Bongiorno A., Bruni G., Duras F., Martocchia S., Travascio A., Vietri G.

Hunting for the most luminous quasars

Signature of outflows in dustreddened/obscured sources

Pervasive outflows at all scales in the Type 1 WISSH QSOs

8:55:20.0 24.0

16.0

c،i

Remarkable nuclear winds (~70%): strong CIV blueshifts (up to 7000 km/s)

Powerful [OIII] kpc scales outflows (~30%) (v~1000-2000 km/s, $\dot{E}_{kin} \approx 0.01 \times L_{bol}$)

X-ray view of hyperluminous quasars

- X-ray nuclear properties for ~50% of WISSH quasars
- $N_{\rm H}$ up to ~5×10²³ cm⁻²
- disk emission largerly dominates over coronal
- little X-ray contribution wrt the bolometric output k_{bol,X}~300 (~1 dex scatter)

Few examples of X-ray spectra **Red-QSO** WISSH-QSO XMM-PN/MOS1/MOS2 XMM-PN/MOS1/MOS2 2×10⁻⁴ Chandra keV² (Photons cm⁻² s⁻¹ keV⁻¹) keV² (Photons cm⁻² s⁻¹ keV⁻¹) ę 104 5×10⁻⁵ θŪ 0-7 Martocchia+201 Zappacosta et al. in prep 0-5 05 2 1 0.5 2 5 Energy (keV) Rest-frame Energy [keV] Energy (keV) **Hot DOG** 104 10 WISSH-QSO XMM-PN/XMM-MOS Chandra keV² (Photons cm⁻² s⁻¹ keV⁻¹) NuSTAR-FPMA NuSTAR-FPMB keV² (Photons cm⁻² s⁻¹ keV⁻¹) 10-5 10-5 10-6 10-6 ₩1835+52 Zappacosta+2018 Martocchia+2017 10-7 0.5 2 5 1 10 Energy (keV) Observed Energy [keV]

X-ray vs Mid IR

X-ray nuclear radiative output compared to larger-scale Mid-IR emission

Strong UV output \rightarrow line driven winds \rightarrow quenching of the X-ray coronal emission (Proga 2003, 2005, 2007)

Wind regulated X-ray emission

- Relation between X-ray luminosity and CIV blueshifts
- No significant dependence at other wavelengths

Comparing X-ray emission to other wavelengths

- 1 dex dependence
- shrink scatter in this regime
- refinement of relations at the highest luminosities

The dust-driven blow-out phase

- WISSH
- Bright QSOs (Coatman+17)
- Red QSOs (Martocchia+2017, Goulding+18 Banerji+15, Feruglio+14)
- Red QSOs (N_H from HR) (Piconcelli et al. in prep.; Banerji+15)
- Hot DOGs (Ricci+2017; Vito+2018; Zappacosta+2018; Wu+2017)
- Local AGN (BASS sample) (Ricci+2017)

WISSH quasars and other hyperluminous quasars are mostly blowing out their obscuring medium

Conclusions

- Hyperluminous QSOs exhibit pervasive signs of outflows
- The X-ray emission correlates over more than 1 dex with the velocity of the broad-line region winds
 - nuclear winds are likely quenching the corona
 - needs to refine $k_{\text{bol},\text{X}}$, $L_{6\mu\text{m}}/L_{\text{X}_{,}}\alpha_{\text{ox}}$ at the highest luminosities
- A large fraction of hyperluminous QSOs is blowing-out their surrounding obscuring medium
- Future perspective:
 - study the X-ray weakness CIV velocity shift at lower L_{bol}
 - investigate mildly relativistic highly ionized SMBH winds with ATHENA

Nuclear winds in hyperluminous QSOs: the Athena perspective

X-IFU simulation

- WISSH quasar at z=3.4
- Wind parameters:
 - v_{wind}=0.15c;
 - $-\log(N_{\rm H}/{\rm cm}^{-2})=23.4$
 - log(U/erg cm s⁻¹)=2.3,
 - v_{turb}=5000 km/s
- 20 ks → 2500 counts
 - accuracy on 1%, 2% and 5%
 on logN_H, v_{wind} and logU
- Variability studies on few hours time-scales

