How many Supermassive Black Holes are there?

Gobierno de Chile

Johannes Buchner MPE, PUC http://astrost.at/istics/

Collaborators (PUC & ETH): Ezequiel Treister, Franz Bauer, Lia Sartori, Kevin Schawinski, Roberto Gonzalez, Nelson Padilla Accretion history of the Universe Buchner+15
Compton-thick fraction Buchner+15
Geometry of the nuclear obscurer Buchner+14,+19
Galaxies as obscurers Buchner+17a,b

Accretion disk wind $N_{\rm H} = 10^{22-24} \,{\rm cm}^{-2}$ presence: depends on $L \& M_{\rm BH}$ covering: 50% Torus & BLR $N_{\rm H} > 10^{23.5} \,{\rm cm}^{-2}$ presence: always covering: 35%

- Spectral fitting methodology (BXA)
- Multi-catalog cross-matching (NWAY)

Buchner+14

Salvato, Buchner+17

Timely growth

Campitiello+18, Marziani & Sulentic (2012)

Timely growth

Campitiello+18, Marziani & Sulentic (2012)

The origin of super-massive black holes

- PopIII stars plus
 - sustained super-Edd accretion
 - metallicity, chemistry & feedback-dep.
 - special halos?
- Direct collapse:
 - high-resolution,
 - chemistry, feedbackdep. growth
 - special halos?

Many assumptions, complex physics

→ EM predictions not unique

difficult to make progress

Cosmological sims: BH seeded in ~1010M_o halos

Becerra+15, Kuiper&Hosokawa+19

Volonteri 2012, Rees 1978

How often does the process need to succeed?

Ansatz

credit: M. Volonteri see also Menou+01

- Halos are born and grow
- At some threshold mass M_c: chance p for seeding success
- Can approximate physical seeding mechanisms

Does not need assumptions of

- seed black hole mass
- accretion
- feedback
- galaxies

Building blocks

- Count leaves of merger tree
- z=0 halo building blocks of size $M_c = 10^{10} M_{\odot}$

••

SMDPL dark-matter simulation Rockstar subhalos Planck cosmology

Occupation at z=0

 $M_c = 10^{10} M_{\odot}$

Occupation Observations

Gallo+10, Miller+15 AMUSE-Virgo

Occupation at z=0

Buchner et al. (in prep)

Required Seeding Efficiency

Buchner et al. (in prep)

Population Evolution

Population Evolution

SMBH merger delays

Kelley+17

Dynamical friction, Light cone scattering, Viscous drag, Gravitational waves

SMBH merger delays

Kelley+17

LISA GW Diagnostic Diagram

Summary: Model-independent seeding

- Seeding efficiency $p > (M_c/10^{11} M_{\odot})^{3/4}$
- LISA will directly
 - Detect >1 merger/year
 - Measure the SMBH space density
 - Measure the merger delay time

For X-rays: \rightarrow James Aird's talk

• High-z Quasar host environments are diverse

see Buchner+19, ApJ (1901.04500)

High-redshift quasars

- z=6 QSO surveys (SDSS)
- Earliest census of active SMBH population
- There are more SMBHs
- Live in massive halos?
- Massive halos or duty cycle?

Overdensities near Quasars

Literature has conflicting results:

- Overdensities
- EqualUnderdensities

compared to control fields

What is happening?

Overdensity predictions

- QSO Hosts definition:
 - Halo mass cut, e.g.: only $>10^{12.3}M_{\odot}$
- Look at neighbourhood

- Galaxies definition:
 - LBG: Hatfield+17
 - LAE: Kovač+07, Sobacchi&Mesinger+15
 - selection as in observations (redshift window, magnitude)

Simply count galaxies within radial shells around quasar

Understanding high-z quasars

LBG

LAE

Large diversity! Large volume in z!

Understanding high-z quasars

LBG

LAE

Buchner et al. (in prep)

Understanding high-z quasars

LBG

LAE

