Uncovering AGN in the Cosmic X-ray background

Mackenzie Jones, R Hickox, S Mutch, D Croton, A Ptak, M DiPompeo

M. L. Jones – X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

Modeling the intrinsic AGN population

A semi-numerical model of galaxy and dark matter halo growth plus a universal mode of black hole accretion

- 2 **Comparison to Observations** Can a simple model recreate observations?
- 3 **Modeling the X-ray Background** What AGN make up the X-ray background?

CENTER FOR

ASTROPHYSICS

Halos Matter ark

S

Ð

axi

σ

A Simple Model Halos, Galaxies, & Black Holes

M. L. Jones – X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

5.75<log

Halos Matter ark

S

Φ

σ

()

A Simple Model Halos, Galaxies, & Black Holes

log $\Phi(L/$

M. L. Jones – X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

CENTER FOR

Evolution of the Eddington Ratio Distribution

M. L. Jones — X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

EDDINGTON RATIO SLOPE DECREASES WITH **INCREASING GAS FRACTION**

Gabor & Bournaud 2013

CENTER FOR

kpc

ASTROPHYSICS

Evolution of the Eddington Ratio Distribution

M. L. Jones – X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

EDDINGTON RATIO SLOPE DECREASES WITH **INCREASING GAS FRACTION**

CENTER FOR

Observables sSFR vs M*

CAN WE RECREATE **OBSERVED** DISTRIBUTIONS **BY APPLYING SELECTION EFFECTS TO THE** INTRINSIC SAMPLE?

M. L. Jones – X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

CENTER FOR

Observables sSFR vs M*

- **Mendez+ 2016**
- **•** Full Simulation
- Luminosity Limited

 $L_x > 10^{41.5} \text{ erg s}^{-1}$

Observables M_{halo} vs Lx

THE OBSERVED PLATEAU IS A DIRECT **CONSEQUENCE OF** THE EDDINGTON LIMIT

M. L. Jones – X-RAY ASTRONOMY 2019: CURRENT CHALLENGES AND NEW FRONTIERS IN THE NEXT DECADE

Jones et al 2019, ApJ, 881, 110

CENTER FOR

Modeling Cosmic X-ray ASCA GIS (Kushino+02) ASCA SIS (Gendreau+95) Background -7 100 BeppoSAX (Vecchi+99) XMM (Lumb+02) E XMM (De Luca+04) Chandra (Hickox+06) RXTE (Revnitsev+03) Swift/XRT (Moretti+09) E < 10 keVS THE OBSCURED S (keV **POPULATION IS This work** THE MAIN $E^2F(E)$ CONTRIBUTOR TO THE CXB 10 Adapted from Gilli+ 2013

CENTER FOR

CENTER FOR

ASTROPHYSICS

100 cm SI 5 $E^{2}F(E)$ (keV 10

100 Cm S $\boldsymbol{\mathcal{O}}$ $E^{2}F(E)$ (keV 10

CENTER FOR

Corresponds to the "knee" of the luminosity function

dΦ/d log Lx [Mpc -2 -4

Lx_{AGN} -6 A10 LDDE -8 A10 (z=0) 40 42 44 $\log \left(Lx \left[erg s^{-1} \right] \right)$

CENTER FOR

Mhalo

100.0 -2 SI 10.0 5 $E^2 F(E)$ (keV 1.0 0.1

CENTER FOR

What is the Intrinsic AGN Population Contributing to the *Cosmic X-ray Background*?

recover optical and X-ray observables

recover the observed CXB

Jones et al 2017, ApJ 843,125 Jones et al 2016, ApJ 826,12

- Forward modeling with a <u>universal</u> broad Eddington ratio distribution
 - fueling mechanism between different AGN host galaxy populations may not be specific to type or age
 - possible to probe the host galaxy and halo properties of AGN that contribute to the CXB

