
Relation between winds and jets in radio-loud AGN

Missagh Mehdipour & Elisa Costantini

Ionised winds in AGN

Warm-absorber winds

Outflows of photoionised gas from the nucleus

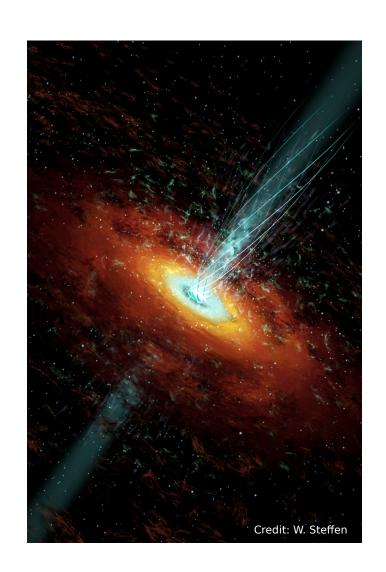
Multiple ionisation and velocity components

lonised winds in AGN

Ionised winds mostly studied in radio-quiet AGN

- Large campaigns on Seyferts
- Sample studies

How about ionised winds in radio-loud AGN?


- Ballantyne+05
- Reeves+09
- Torresi+12
- Tombesi+14
- Di Gesu & Costantini 16

Link between winds and jets?

Questions:

- Differences between ionised winds in RL and RQ AGN?
- Are wind and jet parameters related?
- Common or different origin and driving mechanism?
- We carried out an XMM-Newton spectroscopic study of Type-1 RL AGN

Sample selection

- Started with Quasars and Active Galactic Nuclei Catalogue (Véron-Cetty & Véron 2010)
- Selected radio-loud Type-1 AGN

Radio-loudness parameter: $R = F_{6 \text{ cm}}/F_{\text{opt}}$

Radio-loud AGN: R > 10

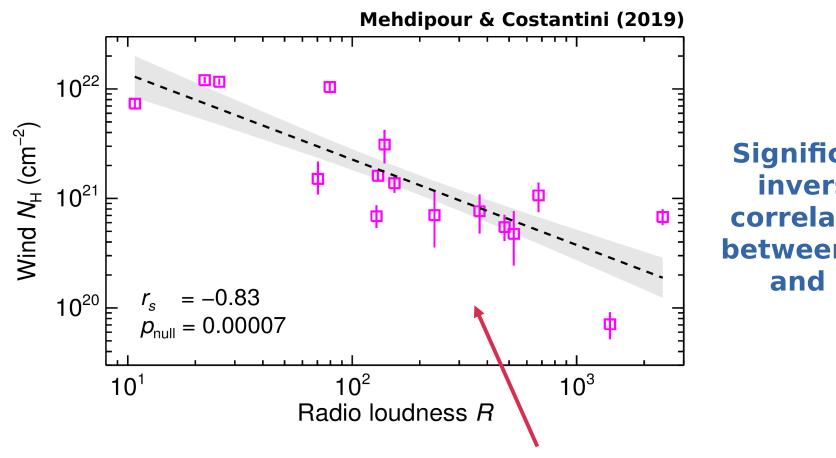
- Selected those with XMM-Newton observations
- Selected those with RGS S/N > 3 per resolution element for high-resolution X-ray spectroscopy

Modelling of the X-ray spectra

X-ray continuum:

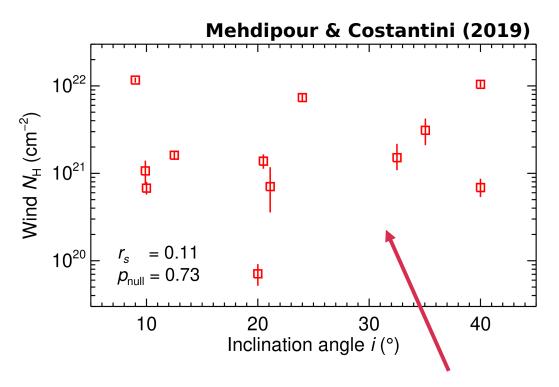
- Power-law (primary X-ray continuum)
- Modified black body (soft X-ray excess)
- Reflection component

X-ray absorption:


- Milky Way neutral ISM absorption
- Host galaxy neutral ISM absorption
- Photoionised absorption by the wind

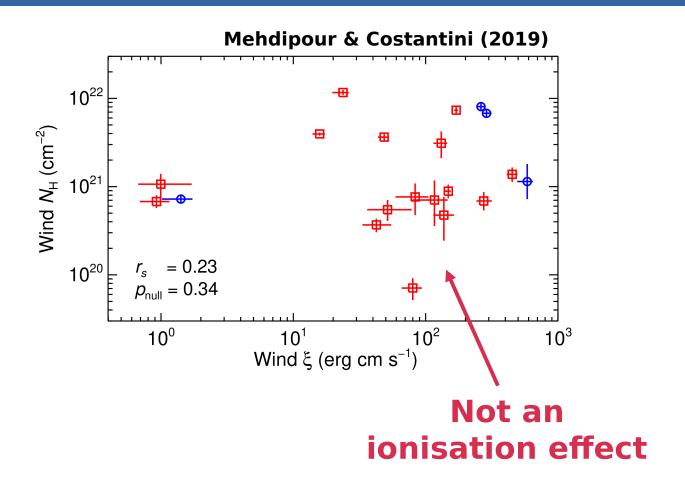
column density ionisation parameter outflow velocity

Modelled with SPEX (Kaastra et al.)

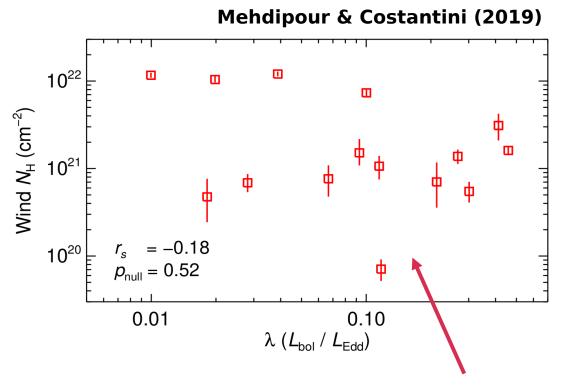

Wind-jet relation in RL AGN

Significant inverse correlation between NH and R

As the radio jet becomes stronger the wind becomes weaker

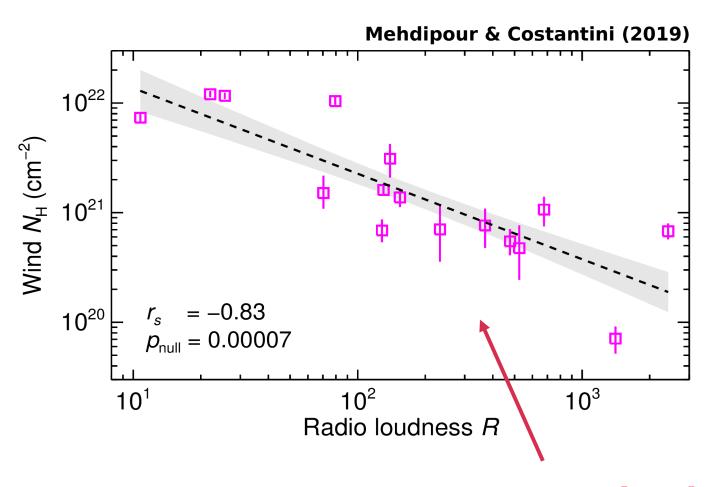

Origin of the NH-R relation?

No dependence on the inclination angle


- Not preferentially equatorial winds
- Similar to UFOs in RL AGN (Tombesi+14)

Origin of the NH-R relation?

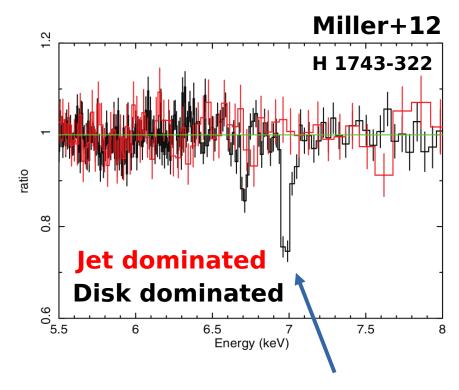
NH of the warm absorber does not decrease with the ionisation parameter


Origin of the NH-R relation?

No dependence on the Eddington luminosity ratio

- Sub-Eddington AGN
- Not caused by widely different accretion rates

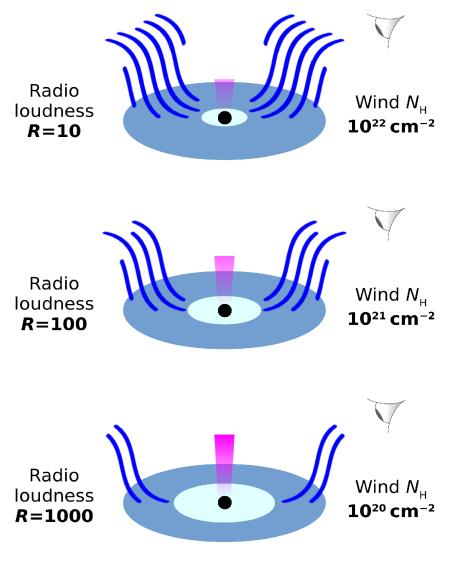
Wind-jet relation in RL AGN



Significant inverse correlation between NH and R

Suggests common mechanism behind both winds and jets: magnetic driving

Anti-correlation between winds and jets in BHBs


- Wind-jet bimodality seen in BHBs
- Wind transition across states suggested to be a magnetic wind
- Different magnetic field configurations drive winds and jets
- Similar wind-jet
 behaviour in BHBs and
 RL AGN

Wind absorption seen when jet is weak

- Neilsen & Lee 09
- **Ponti+12**
- Miller+12

As the jet becomes stronger the wind becomes weaker in RL AGN

Mehdipour & Costantini (2019)

Conclusions

- Inverse relation between radio loudness of the jet and column density of the ionised wind
- Inclination, ionisation, or luminosity effects are not responsible for the relation
- It is linked to the magnetic driving mechanism of both winds and jets in RL AGN
- Analogous to the wind-jet bimodality seen in stellar mass black holes
- Larger sample size needed for a more general characterisation (deeper XMM, XRISM, ATHENA)

Supplementary slides

Radio-loud AGN sample

Table 1. Properties of the 16 radio-loud AGN in our sample.

Mehdipour & Costantini (2019)

Object (1)	Class (2) ^(a)	z (3) ^(a)	<i>B</i> (4) ^(a)	$F_{ m mid-IR}$ (5)	$F_{6\mathrm{cm}}$ (6)	$R (7)^{(k)}$	<i>i</i> (8)	<i>M</i> _{BH} (9)	Gal $N_{\rm H}$ (10) $^{(ah)}$	$F_{\text{soft}} $ $(11)^{(k)}$	$F_{\text{hard}} $ $(12)^{(k)}$	$L_{\rm X} $ (13) $^{(k)}$	$L_{\text{bol}} $ (14) $^{(k)}$	$\lambda $ (15) $^{(k)}$
1H 0323+342	S1n	0.063	15.72	n/a	0.30 (d)	130	13 ^(l)	0.36 ^(v)	21.7	0.53	0.81	0.278	2.08	0.46
3C 59	S1.8	0.111	16.80	n/a	$0.02^{(d)}$	22	n/a	$7.94^{(w)}$	6.59	0.36	0.86	0.538	3.88	0.04
3C 120	S1.5	0.033	15.72	$0.54^{(b)}$	0.36 ^(e)	154	$21^{(m)}$	$0.69^{(x)}$	19.4	3.03	5.27	0.309	2.33	0.27
3C 273	S1.0	0.158	13.05	$0.60^{(b)}$	38.4 ^(f)	1407	$20^{(n)}$	65.9 ^(y)	1.77	5.34	7.93	9.16	97.4	0.12
3C 382	S1.0	0.058	16.50	$0.09^{(b)}$	$0.15^{(d)}$	128	$40^{(o)}$	$11.5^{(z)}$	8.96	2.03	3.44	0.544	4.07	0.03
3C 390.3	S1.5	0.056	16.06	$0.22^{(b)}$	0.12 (e)	70	33 ^(o)	$2.87^{(aa)}$	4.41	2.10	3.48	0.459	3.36	0.09
4C + 31.63	S1.0	0.298	15.85	$0.07^{(b)}$	$1.40^{(d)}$	676	$10^{(p)}$	$20.0^{(ab)}$	12.0	0.28	0.45	3.28	29.0	0.11
4C + 34.47	S1.0	0.206	15.58	$0.05^{(b)}$	$0.37^{(d)}$	139	$35^{(q)}$	3.16 ^(ac)	3.36	0.70	0.86	2.19	16.4	0.41
4C + 74.26	S1.0	0.104	15.13	$0.14^{(b)}$	$0.32^{(g)}$	79	$40^{(r)}$	$41.7^{(ad)}$	23.1	0.85	2.46	1.41	10.4	0.02
ESO 075-G041	S 1	0.028	14.78	$0.12^{(c)}$	$13.4^{(h)}$	2416	$10^{(s)}$	n/a	2.90	0.49	0.67	0.023	0.31	n/a
III Zw 2	S1.2	0.089	15.96	$0.13^{(b)}$	$0.43^{(d)}$	233	$21^{(q)}$	$0.72^{(x)}$	7.13	0.39	0.72	0.251	1.94	0.21
Mrk 6	S1.5	0.019	15.16	$0.55^{(b)}$	$0.10^{(d)}$	26	9 ^(t)	1.80 ^(ae)	9.80	0.17	1.51	0.026	0.23	0.01
Mrk 896	S1n	0.027	15.27	$0.13^{(c)}$	$0.04^{(i)}$	11	24 ^(u)	$0.12^{(af)}$	4.03	0.54	0.37	0.021	0.15	0.10
PKS 0405-12	S1.2	0.574	15.09	$0.09^{(b)}$	1.99 ^(j)	477	n/a	29.5 (ad)	4.16	0.39	0.43	13.4	112	0.30
PKS 0921-213	S 1	0.053	16.50	n/a	$0.42^{(h)}$	369	n/a	$0.79^{(w)}$	5.75	0.41	0.68	0.083	0.67	0.07
PKS 2135-14	S1.5	0.200	15.63	$0.11^{(b)}$	$1.33^{(h)}$	525	n/a	44.7 (ag)	5.22	0.36	0.60	1.21	10.2	0.02

Radio jet information taken from the literature

X-ray modelling of the wind done by us using the SPEX code (Kaastra et al.)

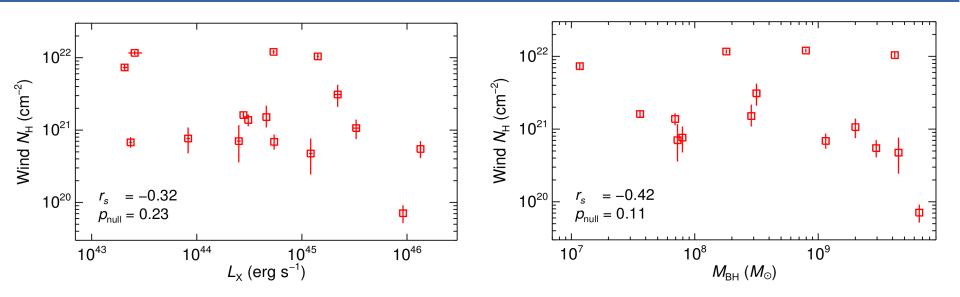
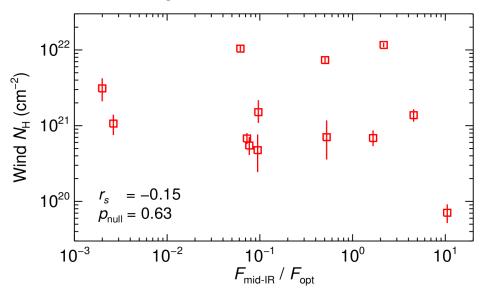
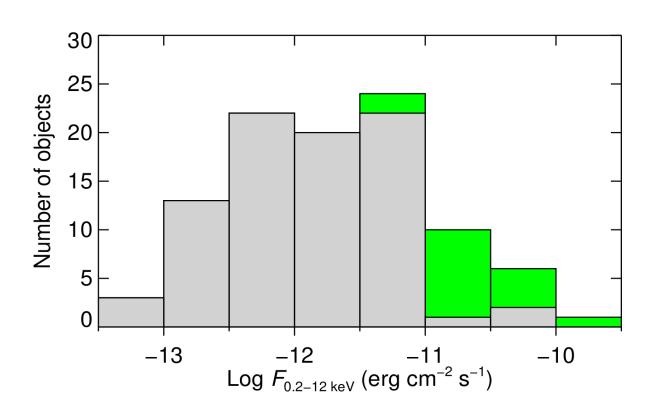

lonised wind parameters

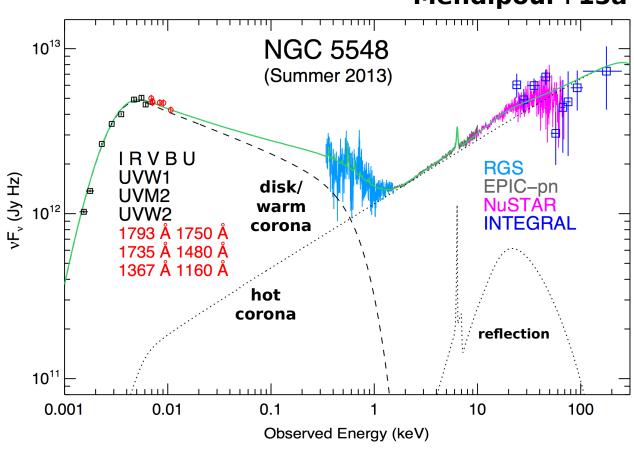
Table 3. Best-fit parameters of the ionised AGN wind and the neutral ISM gas in the host galaxy of the radio-loud AGN in our sample, derived from our modelling of the *XMM-Newton* observations.


Object (1)	Wind N _H (2)	Wind $\log \xi$ (3)	Wind v_{out} (4)	Neutral N _H (5)	C-stat/d.o.f. (6)
1H 0323+342	$9 \pm 2, 7.2 \pm 0.7$	$2.17 \pm 0.02, 0.15 \pm 0.12$	$-830 \pm 170, -880 \pm 120$	< 0.01	2296/1488
3C 59	$40 \pm 2, 81 \pm 8$	1.20 ± 0.05 , 2.42 ± 0.03	-3530 ± 130 , -1000 ± 120	<2	2036/1477
3C 120	14 ± 3	2.65 ± 0.04	-2160 ± 360	< 0.02	1949/1496
3C 273	0.7 ± 0.2	1.90 ± 0.08	-3670 ± 170	< 0.01	2588/1532
3C 382	7 ± 2	2.44 ± 0.06	-1350 ± 370	< 0.02	1805/1467
3C 390.3	$3.7 \pm 0.6, 11 \pm 5$	1.63 ± 0.11 , 2.77 ± 0.06	$-1550 \pm 160, +50 \pm 100$	< 0.2	1847/1481
4C + 31.63	11 ± 3	-0.00 ± 0.20	-960 ± 200	< 0.3	1783/1423
4C + 34.47	31 ± 11	2.12 ± 0.05	-1500 ± 210	< 0.3	1546/1398
4C + 74.26	$36 \pm 3, 68 \pm 8$	$1.69 \pm 0.04, 2.46 \pm 0.04$	$-1490 \pm 90, -3000 \pm 500$	< 0.09	1986/1511
ESO 075-G041	7 ± 1	-0.03 ± 0.11	-210 ± 180	< 0.05	1832/1415
III Zw 2	7 ± 4	2.07 ± 0.13	-1780 ± 670	< 0.2	1763/1468
Mrk 6	116 ± 8	1.38 ± 0.06	-4000 ± 500	27 ± 4	2287/1449
Mrk 896	73 ± 6	2.23 ± 0.02	-130 ± 150	< 0.2	1679/1429
PKS 0405-12	6 ± 2	1.71 ± 0.17	-130 ± 200	< 0.05	1715/1465
PKS 0921-213	8 ± 3	1.92 ± 0.12	-3540 ± 360	< 0.2	1700/1458
PKS 2135-14	5 ± 3	2.14 ± 0.08	-1240 ± 530	< 0.1	1831/1414

Mehdipour & Costantini (2019)


Relation between parameters

Mehdipour & Costantini (2019)


AGN sample

Mehdipour & Costantini (2019)

SED model of NGC 5548

