AGN Radiative Feedback:

the effective Eddington limit for dusty gas

Wako Ishibashi (University of Zurich)

in collaboration with Andy Fabian (IoA Cambridge)

AGN Feedback

Accreting black holes release energy and momentum into the host galaxy via Active Galactic Nucleus (AGN) Feedback in both radiative and kinetic forms

• accretion energy:
$$E_{BH} \sim \epsilon M_{BH} c^2$$
 $\epsilon \sim 0.1$

$$\epsilon \sim 0.1$$

$$\frac{M_{BH}}{M_{gal}} \sim 10^{-3}$$

• binding energy:
$$E_{gal} \sim M_{gal} \sigma^2$$
 $\sigma \sim 300 {\rm km/s}$

$$\sigma \sim 300 \mathrm{km/s}$$

$$\Rightarrow \frac{E_{BH}}{E_{gal}} \sim 100$$

→ AGN feedback plays an important role in the formation and evolution of galaxies

Radiative feedback: the Eddington limit(s)

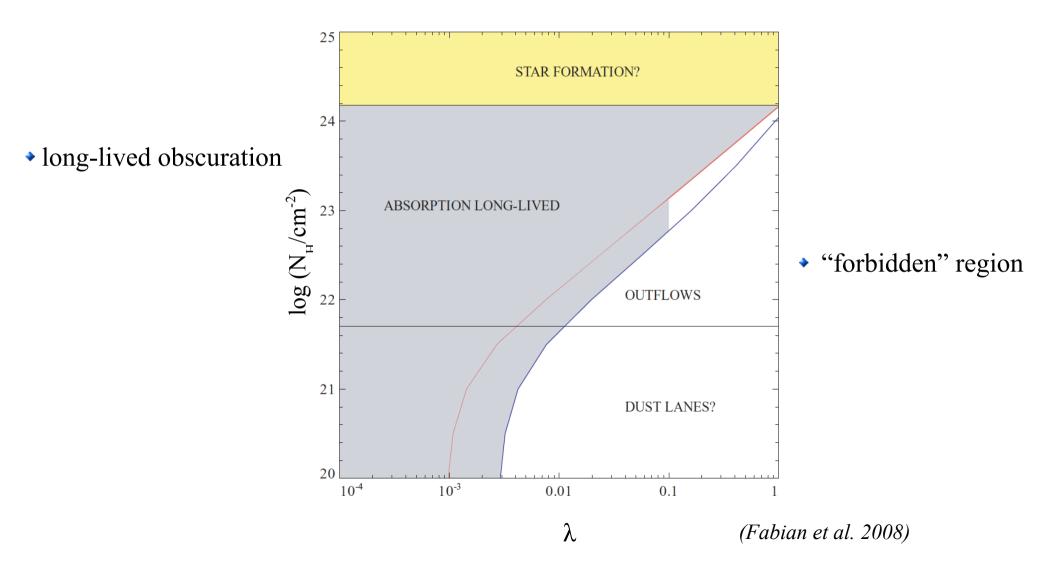
Radiation pressure: electron scattering (σ_{T}) or dust absorption (σ_{d})

→ AGN feedback via radiation pressure on dust (Fabian 1999, Murray et al. 2005, Thompson et al. 2015, Ishibashi & Fabian 2015, ...)

standard Eddington luminosity:

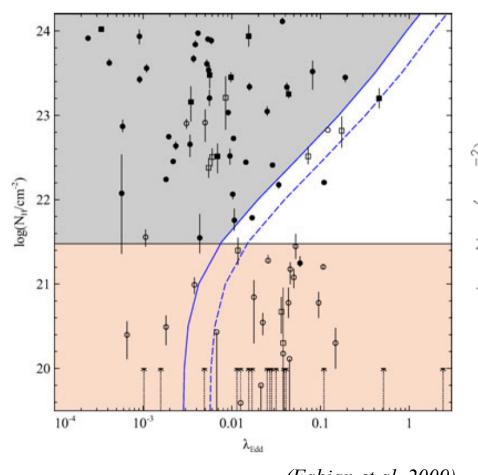
$$L_E = \frac{4\pi G c m_p}{\sigma_T} M$$

 $\frac{\sigma_d}{\sigma_T} \sim 500$

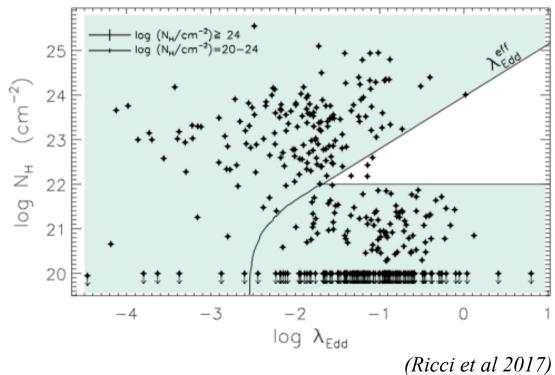

• "effective" Eddington luminosity:

$$L_E' = \frac{4\pi G c m_p}{\sigma_d} M$$

$$\sigma_d > \sigma_T \quad \to \quad L_E' < L_E$$


The " $N_H - \lambda$ plane"

Effective Eddington limit for dusty gas (Fabian et al. 2006, 2008, 2009)



The $N_H - \lambda$ plane: AGN samples

9-month *Swift*/BAT AGN sample

70-month *Swift*/BAT AGN catalogue

(*Fabian et al. 2009*)

~1% in the forbidden region

AGN radiative feedback with radiation trapping

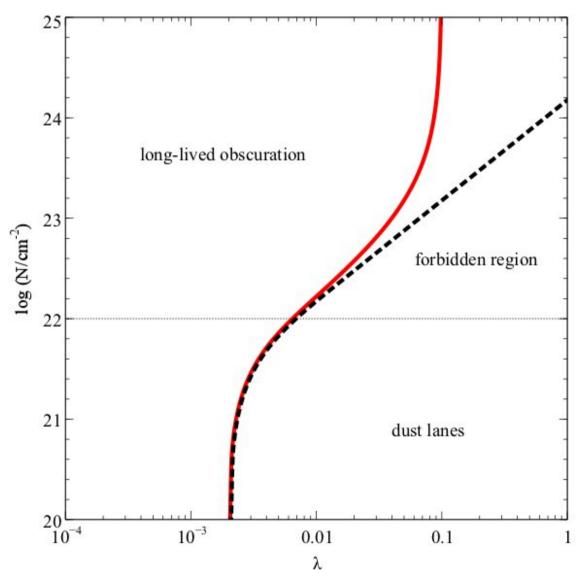
(Ishibashi, Fabian, Ricci, Celotti 2018)

- Single scattering limit (optically thin to IR, optically thick to UV)
- IR-optically thick regime (optically thick to IR and UV)

$$F_{rad} = \frac{L}{c} \left(1 + \tau_{IR} - e^{-\tau_{UV}} \right)$$

$$F_{grav} = 4\pi G m_p M_{BH} N$$

• effective Eddington luminosity:


$$L_E' = \frac{4\pi G c m_p M_{BH} N}{1 + \tau_{IR} - e^{-\tau_{UV}}}$$

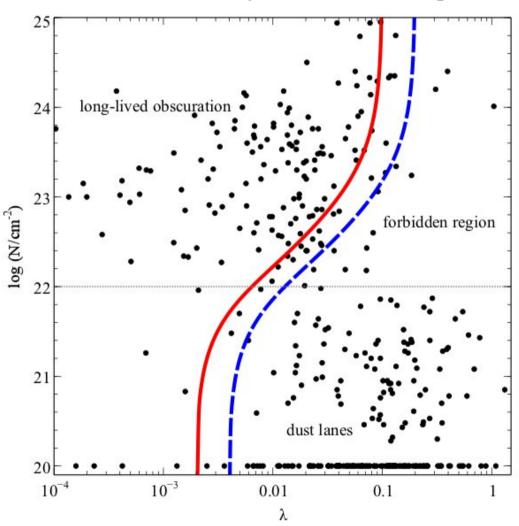
• effective Eddington ratio:

$$\Lambda = \frac{L}{L_E'} = \frac{L(1 + \tau_{IR} - e^{-\tau_{UV}})}{4\pi G c m_p M_{BH} N}$$

$$\Rightarrow N_E = \frac{(1 + \tau_{IR} - e^{-\tau_{UV}})}{\sigma_T} \lambda$$

The revised $N_H - \lambda$ plane

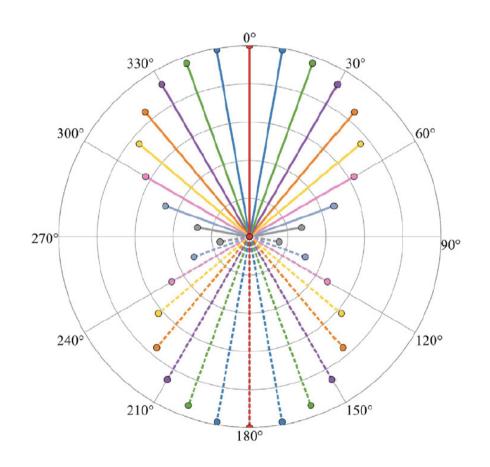
(Ishibashi, Fabian+2018)

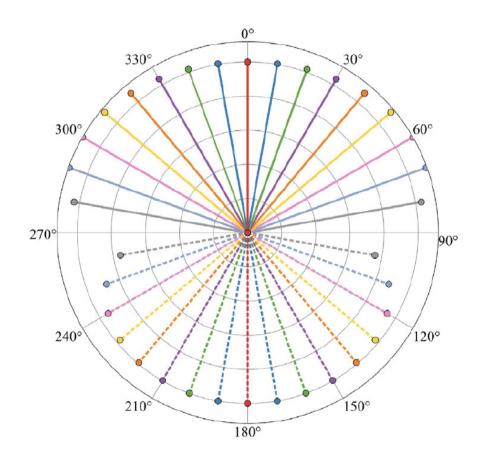

radiation trapping → enhanced forbidden region

Dust-to-gas ratio

→ the more dusty gas is preferentially ejected by AGN radiative feedback

Comparison with observations

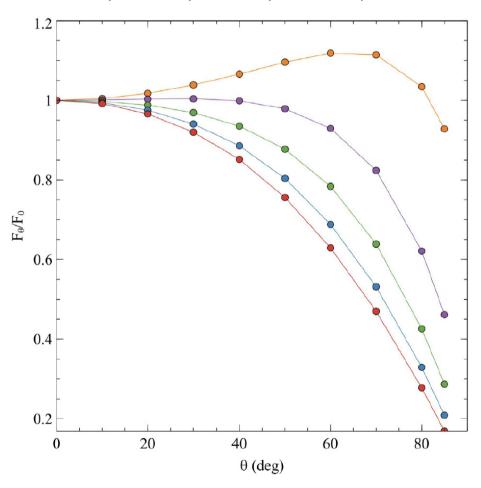



lack of AGNs in the forbidden region

"forbidden" region ~ "blowout" region

BH spin, radiation pattern, and outflow geometry

(Ishibashi, Fabian & Reynolds 2019)


Zero spin → "prolate" outflows

Maximum spin → "oblate" outflows

Radiation pattern and outflow geometry: a new probe of BH spin?

Polar dusty outflows and obscuration

$$\alpha = 0$$
, $\alpha = 0.5$, $\alpha = 0.8$, $\alpha = 0.95$, $\alpha = 0.998$

(Ishibashi, Fabian & Reynolds 2019)

- ▶ IR interferometric observations: polar dust emission in several AGNs (e.g. Asmus+2016, Leftley+2018, ...)
- ▶ Polar dusty outflows for intermediate BH spins $(0 < \alpha < 0.8)$
- Obscuration geometry set by BH spin?

AGN radiative dusty feedback

- Radiation pressure on dusty gas regulates the AGN obscuration & outflow properties
- AGN radiative feedback can adequately reproduce the dynamics and energetics observed in galactic outflows: $\dot{M}v \sim 10$ L/c, $\dot{E}_k/L \sim 5$ % (Fiore+2017, Fluetsch+2019) if radiation trapping is included (Ishibashi & Fabian 2015, 2016, Ishibashi, Fabian, Maiolino 2018)
- Preferential removal of dusty gas in radiation pressure-driven outflows
 → populations of "dusty quasars" (Banerji+2015, Zakamska+2016, ...)
- AGN-starburst co-evolutionary sequence: from dust-obscured starbursts to unobscured luminous quasars (e.g. Sanders et al. 1988)
 - → AGN radiative dusty feedback: a natural physical interpretation?