Size of the ISCO and Hot Corona from Gravitational Lensing

George Chartas in collaboration with: Henric Krawczynski, Xinyu Dai, Christopher Morgan, and Lukas Zalesky

X-ray Astronomy 2019, Bologna Italy
Outline

1. Quasar corona sizes from microlensing
2. Quasar ISCO and spin measurements from microlensing
3. Future prospects
X-ray Astronomy 2019, Bologna Italy
Simulated magnification map of image B of RXJ 1131 (Dai et al. 2010)

Magnification versus distance from caustic.

Characteristic timescales:

$$t_E = \frac{R_E}{v_e} \quad t_S = \frac{R_S}{v_e}$$
Microlensing Light-Curve Model

The main parameters of a microlensing model (Kochanek 2004) are:
- the sizes of the emission regions,
- the mass of the stars doing the microlensing,
- the fraction of normal matter to dark matter in the lensing galaxy
- the velocity describing the motion of the AGN regions across the microlensing caustics.
- The microlensing analysis includes the creation of many random realizations of the star fields near each image and the generation of magnification maps.
Microlensing Light-Curves

$z = 0.66$ RXJ 1131-1231

X-ray

Optical

HJD-2450000 (days)
Microlensing measurements of the sizes of the X-ray and Optical (400nm rest) emission regions of the $z = 0.66$ quasar RXJ1131-1231 indicate:

- X-ray corona size $10\text{-}20\ r_g$
- Optical accretion disk size $\sim 100\ r_g$

$M_{\text{BH}} \sim 6 \times 10^7\ M_{\odot}\ \text{(H}\beta\text{)}$

Constraints on Corona Size from Microlensing

X-ray half-light radii of quasars as determined from our microlensing analysis versus their black hole masses.

X-ray Astronomy 2019, Bologna Italy
Evidence for Microlensed Fe lines in Quasar Spectra

Shifted Fe Kα line in Spectrum of image A (4/17/2010) “double”

Observed Spectrum
Image A of RXJ1131
Date: April 17, 2010
Chandra $t_{\text{exp}} = 25.67$ ks

X-ray Astronomy 2019, Bologna Italy
Evidence for Microlensed Fe lines in Quasar Spectra

Shifted Fe Kα line in Spectrum of image C (1/21/2011)

- Observed Spectrum
 - Image C of RXJ1131
 - Date: January 21, 2011
 - Chandra $t_{\text{exp}} = 24.62$ ks

X-ray Astronomy 2019, Bologna Italy
Based on the analysis of 196 Chandra spectra:

49 epochs × 4 images taken over a period of ~ 14 years
The Energy Shift of the Fe K line

The observed energy of a photon emitted near the event horizon of supermassive black hole will be shifted with respect to the emitted rest-frame energy due to general relativistic and Doppler effects.

\[g = \frac{E_{obs}}{E_{emit}} = \delta \sqrt{\frac{\Sigma \Delta}{A}} \]

Where the Doppler shift is:

\[\delta = \frac{\sqrt{1 - v_\phi^2}}{1 - v_\phi \cos \theta_c} \]

where \(v_\phi \) is the azimuthal velocity and \(\theta_c \) is the angle between our line-of-sight and the direction of motion of the emitting plasma.

\(A, \Sigma, \) and \(\Delta \) are defined as

\[A = \left(r^2 + a^2 \right)^2 - a^2 \Delta \sin^2 \theta, \Sigma = r^2 + a^2 \sin^2 \theta, \Delta = r^2 - 2r_g r + a^2 \]
Constraints on the ISCO and Spin

<table>
<thead>
<tr>
<th>Object</th>
<th>$\log(M_{BH})$</th>
<th>$\log(R_E)$</th>
<th>$\log(r_g)$</th>
<th>R_E/v_e</th>
<th>$10r_g/v_e$</th>
<th>v_e</th>
<th>μ</th>
<th>L_{Bol}/L_{Edd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXJ1131</td>
<td>7.8</td>
<td>16.4</td>
<td>13.0</td>
<td>11.1</td>
<td>0.5</td>
<td>720</td>
<td>57</td>
<td>0.7</td>
</tr>
<tr>
<td>QJ0158</td>
<td>8.2</td>
<td>16.5</td>
<td>13.4</td>
<td>18.0</td>
<td>1.6</td>
<td>600</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>SDSS1004</td>
<td>9.3</td>
<td>16.4</td>
<td>14.5</td>
<td>9.4</td>
<td>14.5</td>
<td>785</td>
<td>70</td>
<td>0.01</td>
</tr>
<tr>
<td>Q2237</td>
<td>8.7</td>
<td>17.0</td>
<td>13.8</td>
<td>8.1</td>
<td>0.7</td>
<td>3890</td>
<td>16</td>
<td>0.04</td>
</tr>
</tbody>
</table>

$z=0.66$ RXJ1131
$z=1.73$ SDSS1004
$z=1.69$ Q2237
$z=1.29$ QJ0158
Constraints on the ISCO and spin of RXJ1131

Left: Distribution of energy shifts of Fe K line

Middle: Observed and calculated extreme $g = \frac{E_{\text{obs}}}{E_{\text{rest}}}$ values as a function of distance from black hole center

Right: Inferred spin parameter of RXJ1131: $a \sim 0.6 \pm 0.1$
Constraints on the ISCO and Spin

SDSS1004+4112

Q 2237+030

Q J0158–4325
Simulations of X-ray Microlensing in Quasar RXJ1131

Chartas+ 2016, 2017; Krawczynski+ 2017

X-ray Astronomy 2019, Bologna Italy
Observations of single caustic crossing events

The detection of individual caustic crossing events would be spectacular revealing the gradual change in the profile and energy of the Fe line as the caustic sweeps over the accretion disk and corona.
Future Prospects: Quasar Microlensing with *AXIS*/Lynx

1. Constrain the sizes of X-ray emitting regions of quasars ranging from the hot corona and inner accretion flow to the molecular and dusty torus

2. Constrain the evolution of the SMBH spins of quasars

AXIS: A Probe-class mission that surpasses *Chandra* in angular resolution by a factor of ~ 2 and sensitivity by an order of magnitude. This mission can be launched in the late 2020s.

Lynx: is the high-energy flagship mission concept funded for study by NASA for consideration in the 2020 Astrophysics Decadal Survey. Angular resolution ~ 0.5 arcsec (HPD) and effective area of 2 m^2 (at 1keV)
The Large Synoptic Survey Telescope (LSST) will discover > 4000 gravitationally lensed quasars that can be resolved by AXIS and Lynx.

The planned observing window of AXIS (~2029-2034) will overlap with the multiband photometric optical surveys of LSST(~2023-2033), GAIA and EUCLID.

LSST will provide the triggers for microlensing events. These triggers can be used to begin dense AXIS monitoring of single caustic crossing events.
Synergy with *eROSITA*

- The X-ray fluxes of the newly discovered by *LSST* lensed quasars will have to be obtained through X-ray observations to determine which lensed systems are suitable for X-ray monitoring of caustic crossings.

- *eROSITA* will perform an all sky survey and will provide the X-ray fluxes of the lensed quasars that are bright enough to be monitored for microlensing events.
Conclusions

• Microlensing analysis of quasars constrains the size of their hot coronae to < 10 rg.

• Redshifted and blueshifted Fe lines with equivalent widths between 500-3000 eV are detected in lensed quasars. We interpret these energy shifts as the result of microlensing of accretion disk emission.

• For RXJ1131 we find $i \sim 60^\circ$, $r_{\text{ISCO}} \sim 3.7r_g$ and $a = 0.6 +/- 0.1$
• For SDSS1004 we find $i \sim 62^\circ$, $r_{\text{ISCO}} \sim 3.3r_g$ and $a = 0.7 +/- 0.1$
• For Q2237 we find $r_{\text{ISCO}} \lesssim 7.5r_g$
• For QJ0158 we find $i \sim 55^\circ$, $r_{\text{ISCO}} \sim 3.7r_g$ and $a = 0.6 +/- 0.1$

• Several spectra show two shifted Fe lines (doubles). Our numerical simulations roughly reproduce the observable results.

• LSST will discover > 4000 lensed quasars bringing in a new era of X-ray lensing studies of quasars and galaxies