Modeling the thermal reverberation in AGN

Michal Dovčiak

Astronomical Institute of the Czech Academy of Sciences

Elias Kammoun University of Michigan Iossif Papadakis University of Crete

X-ray Astronomy 2019 CNR/INAF Research Area, Bologna, Italy 9-13 September 2019

Observations – NGC 5548

- Observations: UV/optical delays with respect to X-rays that increase with wavelength
- This may be due to reprocessing of X-rays in the accretion disc:
 - part of the X-rays is reflected off the disc
 - part is absorbed in the disc where it is thermalized and causes temperature increase
 - thus the disc UV/optical emission will increase
 - X-rays variations must be followed by the variations in the reprocessed UV/optical emission with lags increasing with wavelength

Fausnaugh et al (2016)

UV/optical time lags in NGC 5548

- Observed UV/optical time lags vs. wavelength $\boldsymbol{\lambda}$
- The shape agrees well with the predictions of a Shakura-Sunyaev α-disc.
- The amplitude is too large.
- The disc appears larger.

Fausnaugh et al (2016)

Model assumptions for NGC 5548

black hole: $M = 5 \times 10^7 M_{\odot}, \ a = 0, 1$

primary isotropic power-law emission with energy cut-offs:

h, $L_{\rm X}(2 - 10 {\rm keV}) = 0.0034 L_{\rm Edd}, \ \Gamma = 1.5$ $E_0 = 0.1 {\rm keV}, \ E_{\rm c} = 300 {\rm keV}$

Novikov-Thorne accretion disc: $\dot{M}, r_{\rm in} = \text{ISCO}, r_{\rm out} = 10000 r_{\rm g}, f_{\rm c} = 2.4$

Other parameters:

incl = 40° , $D = 75 \,\mathrm{Mpc}$

$$F_{\rm abs}(r,\varphi) = F_{\rm inc}(r,\varphi) - F_{\rm refl}(r,\varphi)$$
$$T_{\rm new}(r,\varphi) = \left[\frac{F_{\rm abs}(r,\varphi) + F_{\rm NT}(r)}{\sigma}\right]^{1/4}$$
$$\Psi(\Delta\lambda,\tau_{\rm obs}) = \frac{F_{\rm rev}(\Delta\lambda,\tau_{\rm obs}) - F_{\rm NT}(\Delta\lambda)}{F_{\rm X0}\,\Delta t}$$

observer a black hole r_{in} black corona black hole r_{in} black hole r_{in} black hole r_{in} accretion disc

> $F_{\rm refl}$ – given by XILLVERD (Garcia et al. 2016)

KYNXILREV model

- all relativistic effects included

Black body properties

- flux decreases with decreasing temperature much faster for small $\boldsymbol{\lambda}$
- the temperature decreases with radius ($\sim r^{-3/4}$) and with time

Response dependence on accretion rate

The response:

- start rising at the same time for all $\boldsymbol{\lambda}$
 - close to the BH the temperature is high enough for the BB to be emitted at all studied λ
- is shorter for smaller λ
 - BB with smaller temperature at larger radius does not contribute to smaller λ
- is higher for lower accretion rate
 - → disc temperature is lower thus F_{NT} is smaller, the same F_{abs} will cause larger change in BB
- is shorter for lower accretion rate
 - disc temperature is lower thus response diminishes earlier

Delay dependence on accretion rate

As a consequence the delay:

- is shorter for smaller $\boldsymbol{\lambda}$
 - → since response is shorter
- increases with accretion rate
 - → since response is longer

Response dependence on height

The response:

- starts earlier and is shorter for smaller height
 - → light travel time is shorter
- is higher for larger heights
 - → incident flux is proportional to the cosine of the incident angle by increasing the height cosine increases leading to a larger incident flux and thus larger F_{abs}

Delay dependence on height

As a consequence **the delay**:

- is higher for higher height
 - since the response starts later and lasts longer

Fitted delay

- 0.65-day delay between X-rays and HST λ1367 added
- fit in the grid of different accretion rates and heights
- U-band point excluded from fitting due to an additional delay probably caused by the Balmer jump in BLR (Korista & Goad 2001)

$$\chi^2/dof = 10.8/7$$
 for $a = 0$
 $\chi^2/dof = 10.7/7$ for $a = 1$

Summary

- The disc response in all UV/optical bands increases when the source height increases and the accretion rate decreases.
 - Therefore, we do not expect a strong thermal reverberation signal in objects with high accretion rate and strong X-ray reflection signatures like, for example, the Xray bright narrow-line Seyfert-1 galaxies.
- The delays between X-rays and optical/UV bands increase with increasing source height and increasing accretion rate.
- We have successfully fitted the delays with NT disc for NGC 5548 with reasonable accretion rates, $\dot{m} = 0.01 \, \dot{m}_{\rm Edd}$, and height, $h \sim 60 \, \rm r_g$ which is consistent with X-ray reflection fitting by Brenneman et al (2012) where height, $h \sim 100 \, \rm r_g$.
- We have used our reverberation code **KYNXILREV** model.
- More details in: Kammoun, Papadakis & Dovčiak (2019).
- Future plans:
 - → study the effect of other parameters: M, L_X , Γ , E_0 , E_c , inclination, non-razor thin discs
 - → fit other AGN with observed UV/optical lags (NGC4593, NGC4151, Mrk 509)
 - → study the connection of UV/optical light curves with X-ray ones

Additional material

Response dependence on L_X

Time (day)

 $HST \lambda 1158 \text{ Å}$

- Thermal reverberation is highly non-linear
- Response function depends on $L_{\rm X}$

Delay dependence on L_X

Delay dependence on L_X

