X ray obscurers: bridging the gap between warm absorbers and ultra-fast outflows

Jelle S. Kaastra

SRON Netherlands Institute for Space Research

&

Leiden University

Ehud Behar, Stefano Bianchi, Graziella Branduardi-Raymont, Massimo Cappi, Elisa Costantini, Barbara de Marco, Laura di Gesu, Jacobo Ebrero, Jerry Kriss, Junjie Mao, Missagh Mehdipour, Uria Peretz, Pierre-Olivier Petrucci, Gabriele Ponti, Dom Walton

NGC 5548, 11 December 1999, 86 ks, Chandra LETGS Blueshifted absorption lines from photoionised gas: wind (Kaastra et al. 2000)

What have we learned from study of these winds?

- Relatively persistent features, variability through ionisation changes
- Multiple velocity components 0 1000 km/s
- Multiple ionization phases log ξ from 0 4
- Moderate column density $N_{\rm H}$ < 10²⁷ m⁻²
- Majority of ionising photons transmitted
- In some cases @ distance of torus

(review see e.g. Blustin et al. 2005; Laha et al. 2014)

2. Ultra-fast outflows

PDS 456 – Nardini et al. 2015 v = -75000 km/s

PG 1211+143 – Kriss et al. 2018 v = -17000 km/s

UFO's

- strongly transient phenomenon
- velocities 10 000 100 000 km/s
- high ionisation: $\log \xi$ from 3 5
- high column density: $N_{\rm H} \simeq 10^{26} 10^{28} \,{\rm m}^{-2}$
- majority of ionising photons transmitted
- large covering factor?
- Likely close to the black hole $(10^2 10^4 R_s)$
- Large kinetic power
 (See e.g. Tombesi et al. 2011, 2012)

3. Obscuration in NGC 5548

Properties of the obscuring matter

- *Outflowing* with *v*=5000 km/s, broad profile
- Two components:
- Comp 1: $\log \xi = -1.2$, $N_{\rm H} = 10^{26} \, {\rm m}^{-2}$, produces UV Broad Absorption Lines
- Comp 2: almost neutral, $N_{\rm H}$ =10²⁷ m⁻²
- *Partial covering inner BLR* → distance few light days
- Obscuration ongoing already for 8 years

Geometry of obscurers

Dehghanian et al. 2019

Credit: Renaud Person

Effects of obscuration

- Modifies *transmission WA* due to recombination (deionisation)
- Modifies EUV SED → implications for BLR modeling
- Shielding effect allows acceleration (UV-driven)
- At low X-ray resolution, neglect obscuration would lead to wrong continuum

Another case: NGC 3783

Recurring obscuration in NGC 3783

Moderate obscuration, $N_{\rm H}$ 10x lower than in Dec 2016, but still 2x10²⁶ m⁻² (Kaastra et al. 2018)

Obscuration frequency

Sparse info on how often and in how many AGN obscuration occurs

Some best-studied cases:

NGC 5548 (Kaastra et al. 2014) NGC 3783 (Mehdipour et al. 2017) Mrk 335 (Longinotti et al. 2013) NGC 985 (Ebrero et al. 2016) NGC 3227 (Turner et al. 2018)

Summary & conclusions

	v (km/s)	$\log \xi$	log N _H	Shielding	Distance
"Warm absorber"	300	0-3	<27	low	large
Obscurer	3000	<0	<27	high	medium
UFO	30000	3-5	<28	low	small

Simplified representation

• Obscuring material has large impact on its environment

- likely part of disk wind, close to BLR
- Physics complex due to strong shielding
- Simultaneous UV/X-ray spectroscopy is key
- Obscuration cannot be ignored in modelling

Credit: Renaud Person