First measurement of coronal properties in two luminous high-z QSOs

G. Lanzuisi

R. Gilli, M. Cappi, M. Dadina, S. Bianchi, M. Brusa, G. Chartas, F. Civano, A. Comastri, A. Marinucci, R. Middei, E. Piconcelli, C. Vignali, W. N. Brandt, F. Tombesi and M. Gaspari.

2019 ApJ Letter 875 20

AGN accretion and Coronal properties

AGN accretion and Coronal properties

AGN accretion and Coronal properties

Main coronal parameters:

Optical depth τ_{T} Electron temperature kT

- \rightarrow drives the number of C. scattering
- Electron temperature $kT_e \rightarrow set$ the energy gain per scattering

see e.g. Fabian+89, Haardt&Maraschi 91,93, Petrucci+01...

Compactness and pair production

X-ray spectral timing, reverberation and microlensing show that the corona is compact:

e.g. De Marco+11,13, Fabian+09,12, Uttley+14, Chartas+16, King, Lohfink & Kara17, Kara+19...

Compactness and pair production

X-ray spectral timing, reverberation and microlensing show that the corona is compact:

e.g. De Marco+11,13, Fabian+09,12, Uttley+14, Chartas+16, King, Lohfink & Kara17, Kara+19...

Compactness and pair production

Energetic photons in a "compact" source → electron-positron pair production

$$\ell = \frac{L}{R} \frac{\sigma_T}{m_e c^3}$$

$$\Theta = \frac{k_B T}{m_e c^2}$$

If $\ell > \sim 1$, a particle loses a significant fraction of its energy crossing the system When the energy exceeds ~2m_ec² (~1MeV) photon-photon collisions create electron-positron pairs

At equilibrium pair production/annihilation occur at the same rate

Any increase in energy input goes into producing more pairs rather than increasing temperature Runaway pair production removes energy and limits any rise in temperature

 \rightarrow electron-positron pair production act as an ℓ -dependent thermostat

e.g. Cavaliere & Morrison 1980, Svensson82,84, Zdziarski85, Ghisellini&Haardt94...

The Compactness-Temperature plane

The Compactness-Temperature plane

The Compactness-Temperature plane

Runaway pair production regions computed for:

- a spherical corona Svensson84
- a slab (hemisphere) Stern95

Observations: the Nustar era

Observations: the Nustar era

Nustar+non focusing X-ray telescopes (Integral, Swift-BAT...) Vasudevan+13, Malizia+14

Mostly upperlimits!

Observations: the Nustar era

Only Nustar (+ soft X-rays)

z<0.06, L_x<~10⁴⁴ erg/s

QSOs at high z with Nustar

Can we extend to higher luminosities (QSO regime) and high z?

- at high L_x (high l) pair production predicts low E_{cut}
- at high z hard X-rays (>100keV) enter the Nustar band
- $\rightarrow\,$ possible to test pair production models

QSOs at high z with Nustar

Can we extend to higher luminosities (QSO regime) and high z?

- at high L_x (high ℓ) pair production predicts low E_{cut}
- at high z hard X-rays (>100keV) enter the Nustar band
- $\rightarrow\,$ possible to test pair production models

Building on the experties on high-z/lensed QSOs Lanzuisi+12,+16, Dadina+16, Chartas+14,16 based on several XMM/Chandra/Nustar obs. and one XMM LP in AO16 PI Cappi

 \rightarrow 4 targets (2 lensed) 2 of which approved in Nustar Cycle 3 (+ *quasi-simultaneous* XMM)

Target	z_{spec}	f 0.5–10	Lens?	XMM LP	$\log L_{2-10}$	Req. Expo. (ks)	
	-	(10^{-13} cgs)		(ks)	(erg/s)	NuSTAR	XMM
B1422+231	3.62	10	Y	-	45.58	100	30
2MASSJ1614346+470420	1.83	6.7	Ν	92	45.97	150	-
APM08279 + 5255	3.91	5.3	Y	-	45.11	-	-
SDSSJ145453.53 + 032456.8	2.37	5.2	Ν	117	46.11	-	-

The data

Phenomenological model: power-law + cold reflection (+lines) + E_{cut} *Pexmon*, Nandra+07

Free parameters: **F**, **R**, **Ecut**, plus cross-calibrations and cold absorption

The data

Phenomenological model: power-law + cold reflection (+lines) + E_{cut} *Pexmon*, Nandra+07

Free parameters: **F**, **R**, **Ecut**, plus cross-calibrations and cold absorption

Results

Results

- Phenomenological model: *Pexmon*

Target	Г	E _{cut} keV	R
(1)	(2)	(3)	(4)
B1422 2MASSJ16	$1.81\substack{+0.07\\-0.06}\\1.98\substack{+0.11\\-0.05}$	$\begin{array}{c} 66^{+17}_{-12} \\ 106^{+102}_{-37} \end{array}$	$1.3^{+0.5}_{-0.4}\\1.6^{+0.7}_{-0.5}$

- Comptonization model: *Nthcomp* (Zycki+99)

- Consistent results using the MonteCarlo Comptonization model *MoCa* Tamborra+18, Marinucci+18

Results

- We can rule out high values of E_{cut}: <80 keV for B1422 and <200 keV for 2MASSJ16 at 90% c.l.

- We extended for the first time E_{cut} measurements to $L_x = 10^{46}$ erg/s

- We extended for the first time coronal studies at z>1 (see Lanzuisi+16 and Dadina+16 for previous attempts)

What's next...

Approved in Cycle 4!

Target	z_{spec}	$f_{0.5-10} \ (10^{-13} { m ~cgs})$	Lens?	XMM LP (ks)	$\log L_{2-10} \ (\mathrm{erg/s})$	Req. Expo. (ks) NuSTAR XMM	
APM08279+5255	3.91	6.6	Y	-	$\begin{array}{c} \textbf{46.22} \\ \textbf{46.11} \end{array}$	150	30
SDSSJ145453.53+032456.8	2.37	5.2	N	11 7*		170	40

- Observations successfully performed in Jan/Mar 2019

- 8k and 14k counts available respectively

- analysis on going...

Stay tuned!

Conclusion

