Hot ISM in early-type galaxies with stellar and AGN feedback: X-ray diagnostics of the origin and evolution of the hot gas

S. Pellegrini

Dept. of Physics and Astronomy, University of Bologna, Italy

with:

L. Ciotti (Univ. of Bologna),

Z. Gan, J.P. Ostriker (Columbia Univ., NY)

A. Negri (Inst. de Astrofisica de Canarias, Spain)

Optical and Chandra ACIS images, 4x4 arcmin

Goulding et al. 2016

SEE ALSO: Kim, D.-W. et al. 2019, Chandra galaxy Atlas

- Global L_x, T_x, Z
- Surface brightness profiles $\Sigma_X(R)$
- Temperature profiles T(R)
- Abundance profiles Z(R) also: Fe(R)

what CAN these observations tell us about the origin an evolution of the (hot) ISM in ETGs ?

XMM-Newton and Chandra observations accumulated a detailed view of many of these properties

for a *large sample*

- Global L_x, T_x, Z
- Surface brightness profiles $\Sigma_X(R)$
- Temperature profiles T(R)
- Abundance profiles Z(R) also: Fe(R)

XMM-Newton and Chandra observations accumulated a detailed view of many of these properties

for a large sample

What modeling should include

- Realistic galaxy models (mass distribution and stellar kinematics)
- Accurate sources of mass & metals
- Gas heating & cooling (AGN + SNe)
- Star formation
- Environment

simulations with *high* spatial *resolution* follow a *significant part* of the galaxy *lifetime* for *many* representative galaxies $(M_{\star}, shape, v/\sigma, environment, ...)$ Hydrodynamical modeling of the ISM evolution in ETGs

- > 2D, grid-type, **high-resolution** (parsec-scale at the center) simulations
- ISM evolution followed for Δt ~10 Gyr

[from age ~ 2 Gyr, after the main galaxy formation phase]

Modeling includes

the **old**, ageing stellar population **new** star formation **circumgalactic infall**

heating sources:

SNIa, SNII mechanical (from AGN winds) and radiative AGN feedback

➔ the "strength" of AGN feedback is not "adjusted"

realistic ETGs models

3 components: MBH + stars (ellipsoidal Jaffe law) + DM halo

(L, $R_e,\,\sigma_e)$ lie on the scaling laws observed for ETGs

stellar kinematics from Jeans equations (random motions + streaming)

diagnostics considered:

- total L_x , average T_x
- T(R)
- abundance Z and Z(R)

AGN feedback and total L_x [mass sources from stars only]

- total L_x not significantly affected by AGN feedback
 AGN feedback causes an increase in the ejected mass from the galaxy, not major outflows, after z~2
 → present-day L_x is not a diagnostic of the impact of past AGN activity
- the mass input from the stellar population can account for a major part of the observed L_x (for ETGs that are NOT central in groups or clusters)

Feedback and NO Feedback models occupy similar regions \rightarrow average T_{χ} not significantly affected

AGN feedback and temperature profiles

with AGN feedback NO AGN feedback E4 $M_{\star}/10^{11} M_{\odot} = 7.8$ $M_{\star}/10^{11} M_{\odot} = 7.8$ T(keV) T(keV) 3.3 $\Delta t = 10^{7} \, yr$ 1.5 (at t≈9.85 Gyr) 0.5 0.5 0.8 $\left(\right)$ 1 1 1 1 1 1 1 1 11111 0 0.01 0.1 10 0.01 0.1 10 1 R/R_e R/R_e

X-ray emission-weighted, projected and circularized T(R)

from isolated, **NON-ROTATING** galaxy models in Ciotti et al. 2017

An example of a massive, isolated ETG: NGC6482

 L_{κ} =3.3 10¹¹ $L_{\kappa\odot}$

1 M_{\star} = 3.3 ×10¹¹ M_{\odot} with AGN feedback, t=12 Gyr 0.9 k_BT (keV) 0.8 0.7 But: how common are T(R) like this? 0.6 large set of T(R) profiles in 1.1 Lakhchaura et al. 2018 1.05 Chandra Galaxy Atlas (talk by D.-W. Kim) 0.95 5 10 50 100 R (kpc) Buote (2017)

> T(R) promising, powerful diagnostic: how frequently the AGN is on? how efficiently does it heat the central few kpc?

ratio

Chandra observation

Galactic rotation

Evolution

from simulations by Z. Gan

Tracking metals

evolution is tracked for 12 metal tracers X_i (i = 1, 2, ... 12; mass of element *i* per unit volume) : H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe, Ni

additional continuity equations of the tracers (metals comove once injected into the ISM):

$$\frac{\partial X_{i}}{\partial t} + \nabla \cdot (X_{i}\nu) + \nabla \cdot \dot{m}_{Q,i} = \dot{X}_{\star,i} + \dot{X}_{I,i} + \dot{X}_{II,i} - \dot{X}_{\star,i}^{+}$$
old stars SNII's SNII's SNII's SNII's sources of metal enrichment $\dot{m}_{Q,i} = (X_{i}/\rho) \cdot \dot{m}_{Q}$

$$\dot{X}_{\star,i}^{+} = (X_{i}/\rho) \cdot \dot{\rho}_{\star}^{+} = \text{sink of local metals}$$
due to SF Gan et al. 2019

AGN winds inject back to the galaxy material with the instantaneous metal abundance of the disk

Z after an outburst

metals (SNII products, produced in the disk) transported outwards in a biconical wind

10⁸ yr before

Also:

for high Z the gas surrounding the MBH is more likely multiphase, and BLR clouds can exist (Chakravorty et al. 2009)

Average Z, and Z(R)

Fe(R)

0.01

0.01

observed metal abundances lower than expected: old problem

uncertainties in derived abundances? (Kim 2012, de Plaa et al. 2017) dust depletion of metals? (Panagoulia et al. 2013, Lakhchaura et al. 2019) incomplete mixing of SNIa's ejecta? (Matsushita et al. 2000, Tang & Wang 2010) changes in CGM infall? mixing and stirring of metals between inner and outer regions, for

larger mechanical feedback efficiency, and/or infall of satellites

Conclusions

- ✓ the mass input from the stellar population accounts for a major part of the observed L_X of ETGs that are NOT central dominant in groups and clusters
 AGN feedback does not cause major outflows, after z~2
- ✓ temperature profiles (central regions) are a promising diagnostic for AGN feedback
- ✓ galactic rotation is accompanied by star formation \longrightarrow metal injection + transportation: outflowing regions, driven by the BAL wind, can reach Z≈4 Z_☉, as observed
- ✓ average hot ISM abundance Z≃2.3 Z_{\odot} , down to ≃1.5 Z_{\odot} for CGM infall rates predicted by cosmol. sim.'s observed Z(R) and Fe(R) within 10-20 kpc are lower than predicted