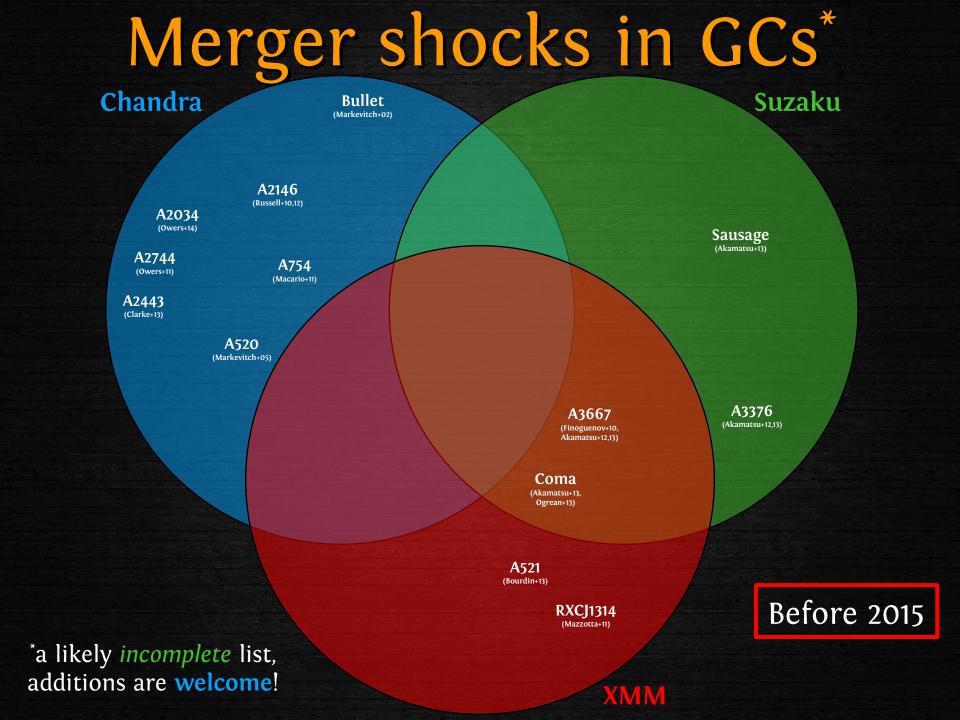
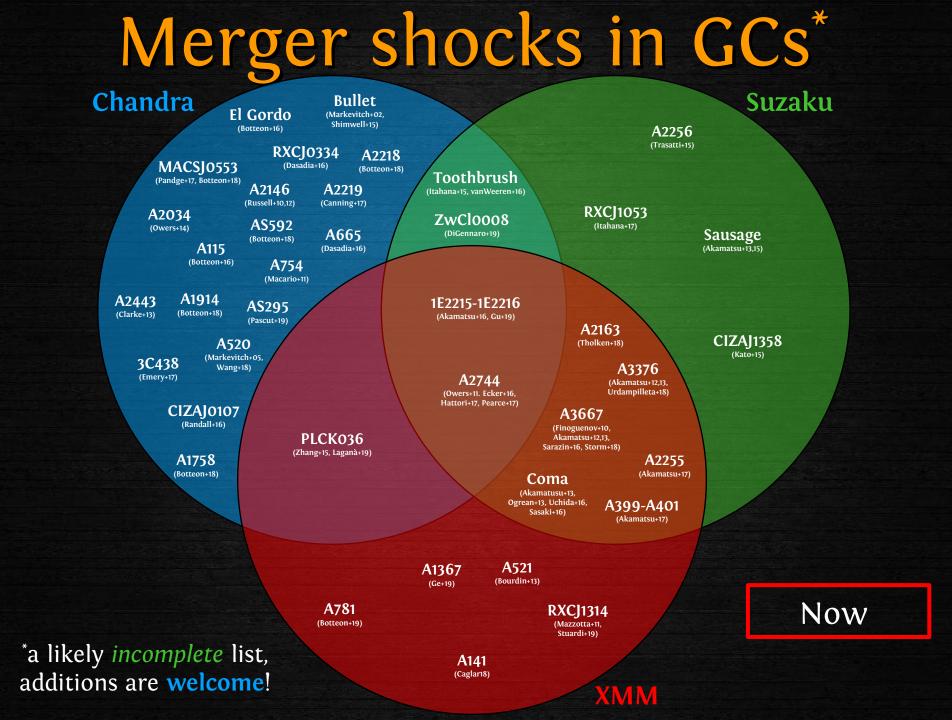
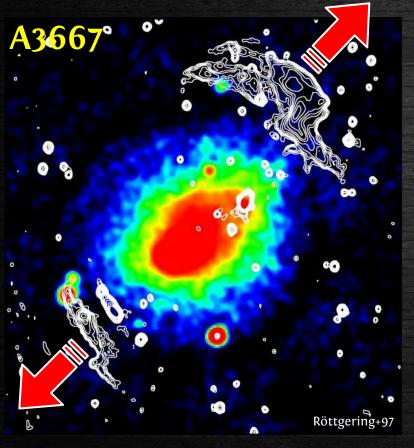
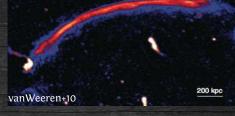

Shocking news from the ICM


Andrea BOTTEON Leiden Observatory


G. Brunetti, D. Dallacasa, F. Gastaldello et al.

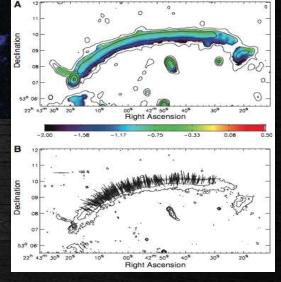
September 10, 2019 – X-ray Astronomy 2019, Bologna



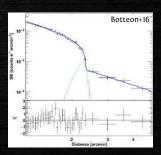


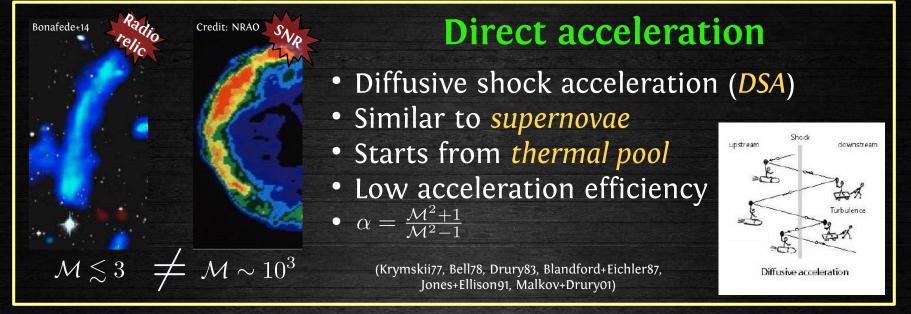
Radio relics

Elongated and arc-shaped polarized sources found in the *outskirts* of <u>some</u> GCs in a merging state



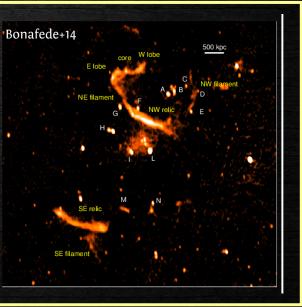
Relic-shock connection:


- Position+morphology
- Spectral steepening



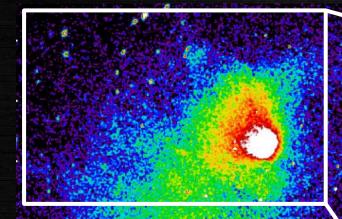
...shocks are also observed!

(Finoguenov+10, Bourdin+13, Akamatsu+Kawahara13, Shimwell+15, Eckert+16. Botteon+16, Akamatsu+17)


Origin of radio relics

Re-acceleration

- Seed relativistic e⁻ required
- Works better for *low Mach numbers*
- Still DSA, but different spectra


(Markevitch+05, Kang+12,14,16, Pinzke+13, Caprioli+Spitkovsky14, Guo+14 Bonafede+14, Shimwell+15, Botteon+16, vanWeeren+17)

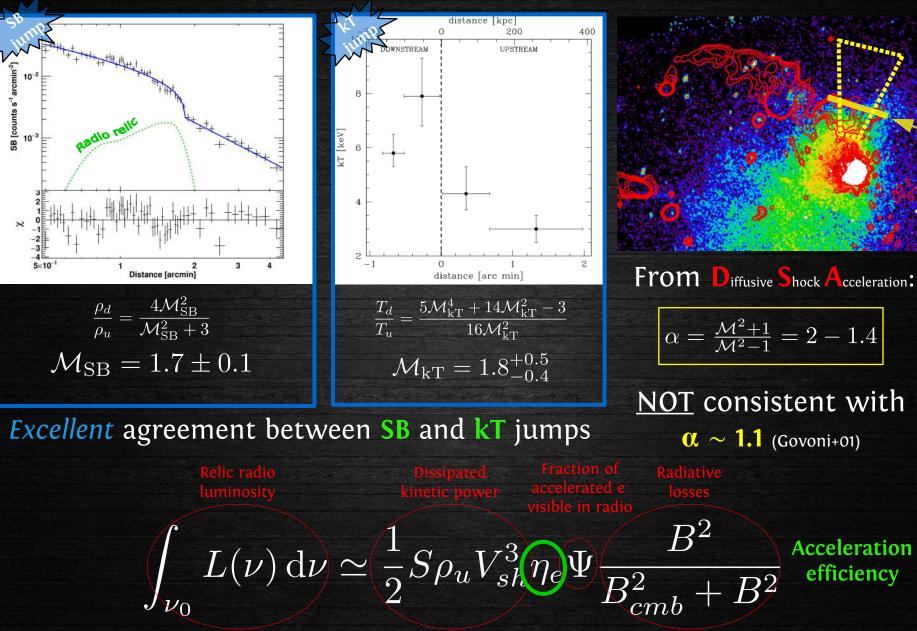
Abell 115

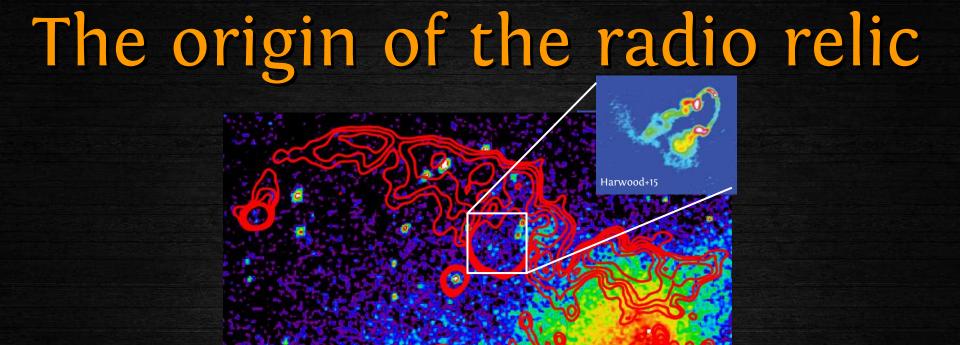
Botteon et al. 2016, MNRAS, 460, L84-L88

1.5 Mpc

Dinamically disturbedOff-axis merger

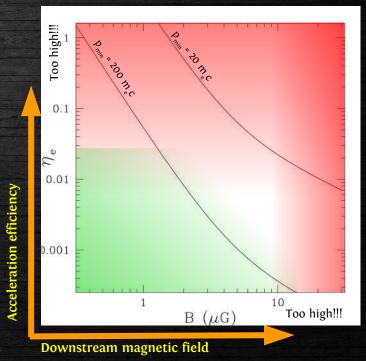
(Gutierrez+Krawczynski05, Barrena+07)


🕖 Chandra 360 ks


Giant radio relic (Govoni+01)

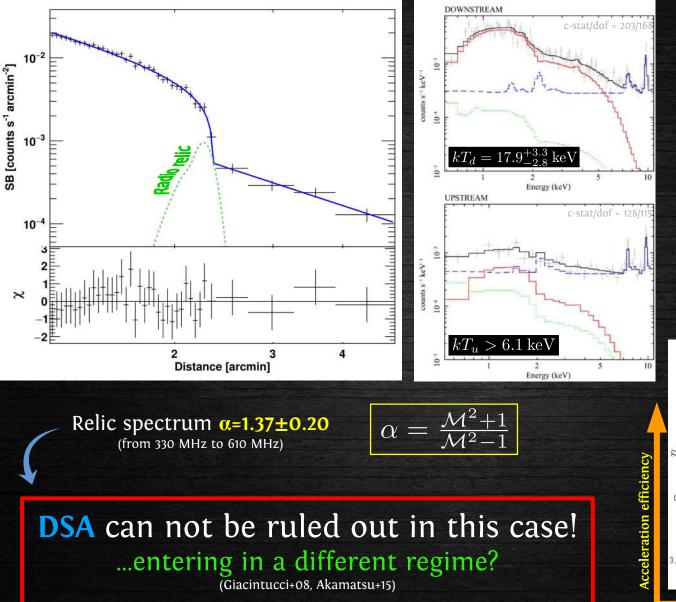
D

VLA @ 1.4 GHz
 Resolution 15" x 14"
 r.m.s. 70 μJy/beam (1σ level)


The shock

DSA from the *thermal pool* is readily ruled out by the relic spectrum... Computing η_e assuming $p_{min} > p_{th}$

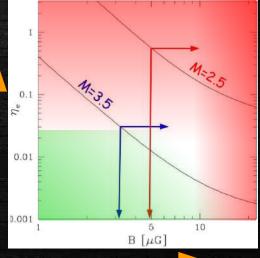
The **RE-acceleration** of *seed e* provided by cluster radio galaxies alleviates the requirement of *high* acceleration efficiencies


El Gordo NW radio relic

Botteon et al. 2016, MNRAS, 463, 1534-1542

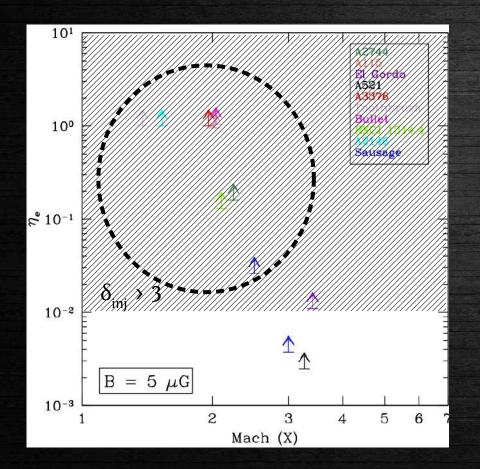
Discovered by SZ signal (Marriage+11)
 Complex merger state (Menanteau+10,12)
 Halo and double relics (Lindner+14)

💓 Numerical simulations (Donnert14, Molnar+Broa Purst15, Ng+15, Zhang+15,18)


Strong shock & DSA

Strong shock Other M > 3 shocks: Markevitch+02 Dasadja+16

 $\mathcal{M}\gtrsim 3$


Constraints improved by the limits on IC emission

Downstream magnetic field

Efficiency in a sample

Recent discoveries of shocks co-located with *radio relics* made possible to extend the study to a sample!

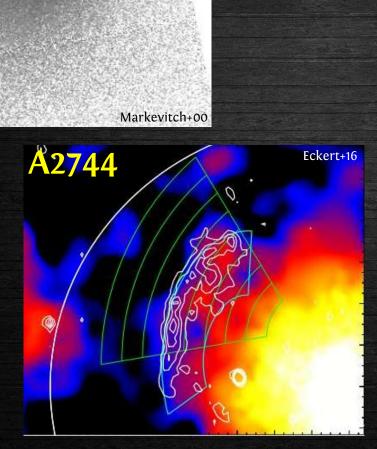
Cluster name	RA _{J2000}	DEC _{J2000}	M_{500}	z
	(h,m,s)	(°,′,″)	$(10^{14} M_{\odot})$	
A2744	00 14 19	-30 23 22	9.56	0.308
A115	00 55 60	+26 22 41	7.20	0.197
El Gordo	01 02 53	-49 15 19	8.80	0.870
A521	04 54 09	-10 14 19	6.90	0.253
A3376	06 01 45	-39 59 34	2.27	0.046
Toothbrush Cluster	06 03 13	+42 12 31	11.1	0.225
Bullet Cluster	06 58 31	-55 56 49	12.4	0.296
RXC J1314.4-2515	13 14 28	-25 15 41	6.15	0.247
A2146	15 56 09	+66 21 21	3.85	0.234
Sausage Cluster	22 42 53	$+53\ 01\ 05$	7.97	0.192

Botteon et al., A&A submitted (arXiv:1907.00966)

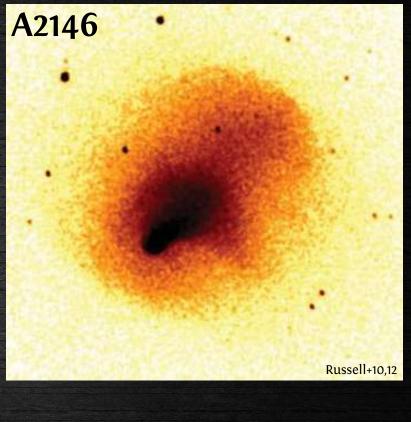
$$_{_{0}}L(\nu) \,\mathrm{d}\nu \simeq rac{1}{2} S \rho_{u} V_{sh}^{3} \eta_{e} \Psi rac{B^{2}}{B_{cmb}^{2} + B^{2}}$$

η_e is computed assuming
 the *upper* bound on the
 shock Mach number

DSA can not explain the origin of the relics in case of weak shocks

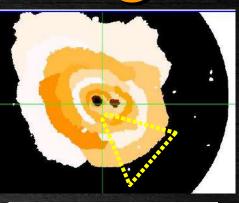

Search for new shocks

1) M₅₀₀ > 5 x 10¹⁴ M_☉
 2) K₀ > 30-50 keV cm²
 3) > 40.000 - 50.000 cts @ 0.5-7.0 keV

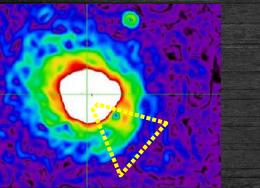

Cluster name	${ m RA_{J2000}} m (h,m,s)$	$\overset{\mathrm{DEC}_{\mathrm{J2000}}}{(°,','')}$	$M_{500} \ (10^{14} { m ~M}_{\odot})$	z	$rac{K_0}{(\mathrm{keV~cm^2})}$
A2813	00 43 24	$-20 \ 37 \ 17$	9.16	0.292	268 ± 44
A370	02 39 50	$-01 \ 35 \ 08$	7.63	0.375	322 ± 91
A399	$02 \ 57 \ 56$	+13 00 59	5.29	0.072	153 ± 19
A401	$02 \ 58 \ 57$	$+13 \ 34 \ 46$	6.84	0.074	167 ± 8
MACS J0417.5-1154	$04\ 17\ 35$	-11 54 34	11.7	0.440	27 ± 7
RXC J0528.9-3927	$05 \ 28 \ 53$	$-39 \ 28 \ 18$	7.31	0.284	73 ± 14
MACS J0553.4-3342	05 53 27	$-33 \ 42 \ 53$	9.39	0.407	1.222
AS592	$06 \ 38 \ 46$	-53 58 45	6.71	0.222	59 ± 14
A1413	$11 \ 55 \ 19$	$+23 \ 24 \ 31$	5.98	0.143	164 ± 8
A1689	$13 \ 11 \ 29$	$-01 \ 20 \ 17$	8.86	0.183	78 ± 8
A1914	$14 \ 26 \ 02$	$+37 \ 49 \ 38$	6.97	0.171	107 ± 18
A2104	$15 \ 40 \ 07$	$-03 \ 18 \ 29$	5.91	0.153	161 ± 42
A2218	$16 \ 35 \ 52$	$+66 \ 12 \ 52$	6.41	0.176	289 ± 20
Triangulum Australis	$16 \ 38 \ 20$	$-64 \ 30 \ 59$	7.91	0.051	10.000
A3827	$22 \ 01 \ 56$	-59 56 58	5.93	0.098	165 ± 12

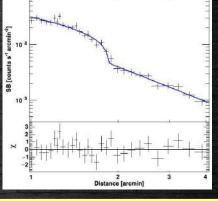
Botteon et al., 2018, MNRAS, 476, 5591-5620

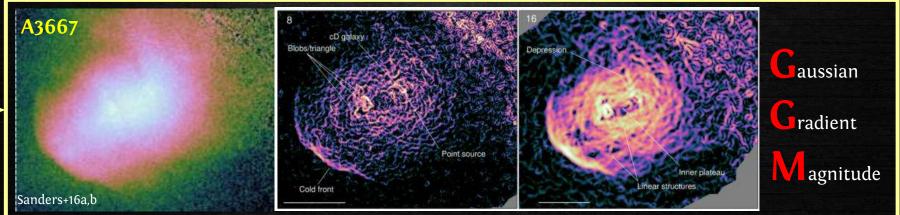
Edges in the literature



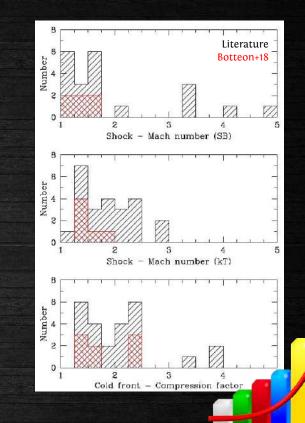
A2142


Walk through


1) Unrelaxed cluster


2) Thermodynamical maps

3) Edgedetection algorithms



4) Surface brightness profiles

New shocks and cold fronts

Cluster name	Position	С	R	\mathcal{P}	$\mathcal{M}_{\mathrm{SB}}$	$\mathcal{M}_{\mathbf{k}\mathrm{T}}$	Nature
A370 {	Е	$1.48^{+0.11}_{-0.10}$			$1.33\substack{+0.08\\-0.07}$		U
	W	$1.56^{+0.13}_{-0.12}$			$1.38^{+0.10}_{-0.09}$		U
A399 {	E inner	$1.72^{+0.13}_{-0.12}$	$0.74_{-0.12}^{+0.14}$	$1.27\substack{+0.26\\-0.22}$	n.a.	n.a.	CF
1.555	E outer	$1.45^{+0.10}$	$1.20^{+0.39}$	$1.74^{+0.58}_{-0.40}$	$1.31^{+0.07}_{-0.07}$		U
A401	SE	$\begin{array}{r} -0.10\\ 1.39 \substack{+0.04\\-0.04}\\ 2.50 \substack{+0.29\\-0.25}\end{array}$	$0.78^{+0.07}_{-0.06}$	$1.74_{-0.40}^{+0.58}$ $1.08_{-0.09}^{+0.10}$	n.a.	n.a.	CF
MAG9 10415 5 1154	NW	$2.50^{+0.29}_{-0.25}$	< 0.59	< 1.64	n.a.	n.a.	CF
MACS J0417.5-1154 {	SE	0 44 + 0.31	$0.44_{-0.10}^{+0.17}$	$1.07^{+0.44}_{-0.27}$	n.a.	n.a.	\mathbf{CF}
RXC J0528.9-3927	Е	$2.44_{-0.25}_{-0.09}$	$0.73\substack{+0.10\\-0.14}$	${}^{1.07}_{-0.27}^{+0.44}_{-0.27}\\{1.10}_{-0.22}^{+0.38}$	n.a.	n.a.	CF
(E inner	$2.49^{+0.32}_{-0.26}$	$0.62^{+0.33}_{-0.18}$	$1.54\substack{+0.85\\-0.48}$	n.a.	n.a.	CF
MACS J0553.4-3342	E outer	$1.41^{+0.14}_{-0.13}$	$2.00^{+1.18}_{-0.63}$	$2.82^{+1.63}_{-0.93}$	$1.28^{+0.10}_{-0.09}$	$1.94_{-0.56}^{+0.77}$	S
	W	$1.70^{+0.12}_{-0.11}$	$0.33_{-0.12}^{+0.22}$	$0.56^{+0.38}_{-0.21}$	n.a.	n.a.	CF
AS592	SW	$1.99^{+0.17}_{-0.15}$	$1.61_{-0.43}^{+0.66}$	$3.20^{+1.34}_{-0.89}$	$1.72^{+0.15}_{-0.12}$	$1.61_{-0.42}^{+0.54}$	S
(E upper	$1.48^{+0.11}_{-0.12}$		$0.59^{+0.31}_{-0.18}$	-0.12		0.0
A1914	E lower	$1.64_{-0.12}^{+0.12}$	$0.40\substack{+0.21 \\ -0.12}$	$\begin{array}{c} 0.59 \substack{+0.31 \\ -0.18 \\ 0.66 \substack{+0.35 \\ -0.20 \end{array}} \end{array}$	n.a.	n.a.	CF
	W	$1.33^{+0.08}_{-0.07}$	$1.27^{+0.26}_{-0.21}$	$1.69^{+0.36}_{-0.29}$	$1.22\substack{+0.06\\-0.05}$	$1.28\substack{+0.26 \\ -0.21}$	S
(SE inner	< 1.47	$1.33_{-0.19}^{+0.27}$	< 2.36	< 1.32	$1.34_{-0.20}^{+0.21}$	S
A2104	SE outer	$1.54\substack{+0.16 \\ -0.14}$	$0.77_{-0.21}^{+0.30}$	$1.19\substack{+0.48\\-0.34}$	$1.37\substack{+0.12\\-0.10}$	-0.20	U
l	SW	$1.27^{+0.07}_{-0.06}$	$0.85^{+0.21}_{-0.15}$	$1.08^{+0.26}$	$1.18^{+0.05}$	÷ • •	U
(N	$1.47^{+0.21}_{-0.18}$	$1.38^{+0.40}_{-0.28}$	$2.03^{+0.66}_{-0.48}$	$1.18_{-0.04}^{+0.05}$ $1.32_{-0.13}^{+0.15}$	$1.39^{+0.37}_{-0.29}$	S
40010	SE inner	$1.38^{+0.18}_{-0.11}$	$0.84_{-0.17}^{+0.35}$	$1.16^{+0.50}_{-0.25}$	$1.26^{+0.13}_{-0.08}$	-0.29	U
A2218	SE outer	$1.26^{+0.14}_{-0.14}$	$1.44_{-0.33}^{+0.48}$	$1.81^{+0.64}_{-0.46}$	$1.17_{-0.09}^{+0.10}$	$1.45\substack{+0.43\\-0.33}$	S
	SW	$1.41^{+0.23}_{-0.21}$	$1.41^{+0.83}_{-0.49}$	$1.99^{+1.21}_{-0.75}$	$1.28^{+0.17}_{-0.14}$		Ū
Triangulum Australis	E	$1.34_{-0.04}^{+0.04}$	$1.00_{-0.10}^{+0.15}$	$1.34_{-0.14}^{+0.20}$	$1.23^{+0.03}_{-0.03}$		U

22 edges: 6 shocks, 8 cold fronts and 8 uncertain

- Statistics of detected shocks and cold fronts in the ICM increased
- General **agreement** between the Mach numbers derived from kT and SB jumps
- All the shocks found have <u>low Mach number</u> (M < 2)

Summary

- When clusters collide, shocks happen
- Number of shocks increasing
- Merger shocks are responsible of radio relics
- Relic-shock connection in A115 & El Gordo (Botteon+16a,b)
- First *constraints* on the acceleration efficiency in a sample of radio relics (Botteon+, submitted)

Thank you

- **DSA** is not responsible of *radio relics*
- Detection of new shocks (and cold fronts) (Botteon+18)