X-raying the Planck legacy: X-ray properties of SZselected clusters

Mariachiara Rossetti (IASF-Milano INAF) In collaboration with: M. Bertuletti, M. Della Torre, G. Pantiri (UniMI), F.Gastaldello, S. Molendi, S. De Grandi, S. Ghizzardi, D.Eckert, J.B. Melin, L. Lovisari et al

INAF

Istituto di Astrofisica e Fisica Cosmica di MILANC

Observing the hot and diffuse baryons

Hot and diffuse baryons in galaxy clusters (ICM) can be observed in Xrays and in the microwave band through the Sunyaev-Zeldovich effect (SZ)

 ✓ Very sensitive to dense cluster regions (I_x~n_e²T^{0.5})
✓ Mature field
✓ The primary way to characterize the ICM thermodynamical properties

- ✓ Also sensitive in the low density regions (I_{sz}~n_eT)
 - ✓ Rapidly evolving field
- Proven very effective to detect clusters (redshift independent): SZ cluster catalogues

The Planck (clusters) legacy

The Planck (clusters) legacy

M₅₀₀ [10¹⁴ M -]

0:2

What are the properties of this population of clusters?

 Is the distribution of relaxed/disturbed objects the same as in X-ray samples?

 Do they obey the same scaling laws?

The dynamical state of Planck clusters

Offset between X-ray peak and BCG^{*} position as a dynamical indicator (Hudson et al 2010, Sanderson et al 2009, Mann & Ebeling 12)

*BCG= Brightest Cluster Galaxy

MR et al (2016) MNRAS 457, 4515

The dynamical state of Planck clusters

 $c = \frac{I(R < 40 \ \mathrm{kpc})}{I(R < 400 \ \mathrm{kpc})}$

Concentration parameter as an indicator of cool core* and dynamical state (Santos et al 08)

*cool core (CC) = central regions of typically relaxed galaxy clusters featuring a prominent intensity peak, lower T, high metal abundance

MR et al (2017) , MNRAS 468, 1917

The dynamical state of Planck clusters

Significant differences in dynamical state of Planckselected clusters with respect to X-ray based samples (see also Andrade-Santos et al 2017, Lovisari et al 2017): Selection effects in X-ray flux-limited surveys?

Simulating selection effects

Relaxed CC clusters (peaked SB profile) are easier to detect in X-ray surveys: CC-bias (e.g. Eckert+ 11)

Simulations to reproduce CC-bias starting from a Planck-like sample: Secondary CC peak emerges in simulated distribution Difference largely due to CC bias

X-raying the Planck (clusters) legacy

X-raying the Planck (clusters) legacy

The population detected by Planck is more **representative** of the cluster population in the Universe than most X-ray samples. $\downarrow_{1:0}$ We need X-ray obs. to study them Follow up observations of large well-defined subsamples. An XMM-Newton Heritage program: Witnessing the culmination of structure formation P.I.s: M. Arnaud & S. Ettori 118 clusters, 3 Ms See Stefano's talk and Lorenzo's poster

X-raying the Planck (clusters) legacy

The population detected by Planck is more representative of the cluster population in the Universe than most X-ray samples. $_{10}^{\perp}$ We need X-ray obs. to study them Follow up observations of interesting and peculiar objects, such as outliers in scaling relations

21 Candidate X-ray underluminous objects (out of 473 clusters at z<0.2)

Planck 2015 Results.XXIV

Most density profile lie below the median one at all radii, but deviations between 2-3 σ for ~4% of the population **Not significant outliers**

Density profiles Need of a comparison sample: representative, SZ-selected, analysed and scaled in the same way Waiting for Heritage, quick subsample from Lovisari+17 PRELIMINARY Gas fraction 10⁻¹ Lovisari et al: 17 14 Median profile and Our sample 12 scatter 10⁻² L17 subsample 10 $h(z)^{-2}n_{e} (cm^{-3})$ 8 10⁻³ G044.46-65.42 6 26.61-37.63 6.72-72.82 54-42.16 10^{-4} 4 .65.95+41.01 G167.98-59.95 G261.88+62.85 2 G262.83+25.77 *=double clusters G280.17+47.83 10⁻⁵

Most density profile lie below the median one at all radii: gas poor systems but in the tail of the distribution

1.0

0:02

0:04

0:06

0:08

M_{gas}=M_{tot}

0:10

0:12

0:14

0.16

0.1

R/R₅₀₀

Scaling relations

Excluding double systems, consistent within 1-2 σ with scaling relations Not expected to produce a significant effect on cosmological results

Take home messages

Difference in the clusters dynamical state in Planck and most X-ray selected samples, largely due to selection biases in X-rays

Planck and SZ catalogues are a gold mine for cluster studies

No indication of a "deviant" population from scaling relation

Backup slides

A selection bias in Planck?

* Is the Planck selection biased towards disturbed objects?

Test with simulations:

- Injection of SZ maps of disturbed/relaxed clusters in simulated sky.
- No significant differences in the selection function.

(Planck 2015 Results, XXVII)

Cool core bias

Simulations of CC bias from Eckert et al 2011

The effect is stronger close to the detection limit of the survey

It affects X-rays surveys ($I_x \approx n_e^2$, Pesce et al 1990, Eckert et al 2011) and is predicted to be small in SZ-surveys ($I_{SZ} \approx n_e$, Lin et al 2015, Pipino & Pierpaoli 2010), especially with Planck

SZ vs X-ray samples

Literature information on the BCG – Xray peak offset available for many samples, often with heterogeneous selection.

We compared only with purely X-ray selected samples

ME-MACS (Mann & Ebeling 2012): 108, most massive high-z (>0.15) objects in RASS data **HIFLUGCS** (*Zhang*+, 2011): 62, Brightest X-ray clusters, low mass objects local, **REXCESS** (Haarsma+2010): 30, intermediate mass and z

MR et al (2016) MNRAS

SZ vs X-ray samples

Results

