Green Peas
– the X-ray brightest star forming galaxies?

Jiří Svoboda¹, Vanesa Douna², Ivana Orlitová¹, Matthias Ehle³, Annika Franeck¹, Richard Wünsch¹

¹ Astronomical Institute of the Czech Academy of Sciences, Prague
² IAFE, CONICET-UBA, Buenos Aires
³ ESAC, Villanueva de la Cañada

X-ray Astronomy 2019, Bologna, 10th Sep 2019
Green Peas (GPs)

- compact, low-mass ($\approx 10^9 M_\odot$), highly star-forming ($\approx 10 M_\odot$/yr) galaxies at redshift $z \approx 0.2-0.3$ (Cardamone et al., 2009)
- strong UV Lyα lines, comparable to high-z starburst galaxies known as Lyman-Alpha Emitters (Henry et al. 2015, Verhamme et al. 2017, Orlitová et al. 2018)
- some were found to be leaking Lyman continuum (Verhamme et al. 2017, Izotov et al. 2018)
Lyman Continuum (LyC) escape

- LyC efficiently ionizes hydrogen atoms
- LyC leakage from star-forming galaxies could play an important role in Re-ionisation of the Universe
 - quasars represent a competitive scenario
- LyC escape reported in several GPs
 - the fraction of LyC escape varies from 5 to 70% (Izotov+18)
 - star forming galaxies numerous in early Universe, 20% of leakage should be sufficient (Yajima+09, Paardekooper+15)
 - GPs share the same properties with high-z star-forming galaxies and thus can be considered as their low-redshift analogs
Optical characteristics of Green Peas

- optical sky survey with SDSS
- GPs discovered by citizen project on galaxy classification
- most GPs are purely star-forming galaxies according to the optical lines
- what are their X-ray properties?
Our project with XMM-Newton

• XMM-Newton observed three GPs (PI M. Ehle)
 • sources selected as purely star-forming according to the BPT classification
 • highest SFR (SFR ≈ 20-60 M$_\odot$/yr) – to maximize chance of X-ray detection

<table>
<thead>
<tr>
<th>source</th>
<th>redshift</th>
<th>SFRa [M$_\odot$/yr]</th>
<th>Metallicityb Log[O/H] + 12</th>
<th>Net count rate [10$^{-3}$ cts/s]</th>
<th>L$_x$ (0.5-8 keV, rest frame) [1042 erg s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDSSJ074936.7+333716 (GP 1)</td>
<td>0.2733</td>
<td>58.8</td>
<td>8.3</td>
<td>3.1 ± 0.7</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>SDSSJ082247.6+224144 (GP 2)</td>
<td>0.2162</td>
<td>37.4</td>
<td>8.1</td>
<td>6.4 ± 0.7</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>SDSSJ133928.3+151642 (GP 3)</td>
<td>0.1920</td>
<td>18.8</td>
<td>8.1</td>
<td>-</td>
<td>< 0.13</td>
</tr>
</tbody>
</table>

a SFR determined from H$_\alpha$ (Cardamone+09)

b we measured metallicity based on O3N2 method (Pettini&Pagel, 04)

03N2 method employs [O III]λ5007/Hβ and [N II]λ6583/Hα emission line ratios
X-ray images

GP 1:
clear detection in soft X-rays (<2 keV)

GP 2:
detection in full X-ray band (0.5-10 keV)

GP 3:
no clear detection
X-ray spectra

- different spectral slope:
 - $\Gamma \approx 3$ for GP1
 - $\Gamma \approx 2$ for GP2
Measured X-ray luminosity

- GP 1 and GP 2 are largely above different L_x-SFR- (metallicity) empirical relations
- their X-ray excess is of order of 10^{42} erg/s
- GP 3 only upper limit consistent with predictions
Comparison with other star-forming galaxies

- \(L_X \)-SFR-metallicity relation based on *Brorby et al. 2016*
- GP 1 and GP 2 are significantly above the correlation
- are X-ray brighter than Lyman-Break Analogs, Lyman-Break Galaxies, Green Pea Analogs, or other nearby star forming galaxies
Explanation of the X-ray excess

• stochasticity?
 • cannot explain dispersion at high SFR
 • Gilfanov+04 showed that the probability of detecting $L_x = 2 \langle L_x \rangle$ is $p < 0.001$
 for $SFR \approx 40 \, M_\odot/yr$ (see also, Justham & Schawinski 12), our GPs have $SFR \approx 20-60 \, M_\odot/yr$
Explanation of the X-ray excess

• stochasticity? X

• larger number of HMXBs? (due to different IMF?)
 • number of HMXBs: \(N \approx 13 \) SFR (Gilfanov & Merloni, 2014)
 • measured \(L_x \) is at least 4-6x larger than predicted
 \[\rightarrow \text{SFR from } L_x \text{ excess is } \text{SFR} \approx 300 \text{ M}_\odot/\text{yr} \]

<table>
<thead>
<tr>
<th></th>
<th>SFR (from (H\alpha))</th>
<th>(N) (HMXB) expected</th>
<th>(N) (HMXB) from (L_x) excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP 1</td>
<td>58.8</td>
<td>764</td>
<td>3000</td>
</tr>
<tr>
<td>GP 2</td>
<td>37.4</td>
<td>486</td>
<td>3400</td>
</tr>
</tbody>
</table>
Explanation of the X-ray excess

• stochasticity? X
• larger number of HMXBs? ?
• ULXs? SNe?
 • observed in star forming galaxies (Basu-Zych+13, Kaaret+17)
 • X-ray luminosity of ULXs is $10^{39}-10^{41}$ erg/s, at least 10-1000 ULXs needed to explain the observed X-ray excess
 • luminous SNe? (see talk by Dwarkadas)
 • for SFR ≈ 50 M_\odot/yr star with $M > 8M_\odot$ every 2-3 years
Explanation of the X-ray excess

• stochasticity? X
• larger number of HMXBs? ?
• ULXs? SNe? ?
• hot gas?
Explanation of the X-ray excess – hot gas?

- simulations of hot gas X-ray luminosity from star clusters do not reach the observed luminosity of GPs

Franeck et al., in prep.
Explanation of the X-ray excess

• stochasticity? X
• larger number of HMXBs? ?
• ULXs? Sne? ?
• hot gas? X
• AGN?
Explanation of the X-ray excess – AGN?

- comparison of GPs with LBAs with the composite spectrum (Jia+11)
Explanation of the X-ray excess

- stochasticity? X
- larger number of HMXBs? ?
- ULXs? SNe? ?
- hot gas? X
- AGN? ?

- the excess is present in two out of three GPs
 - GP2 and GP3 very similar in optical light, but largely different in X-rays
 - easiest to be explained by an AGN (on/off), probably with $M_{\text{BH}} < 10^5 M_\odot$
Conclusions

• XMM-Newton observations of three Green Pea galaxies showed a significant X-ray excess of $L_x \approx 10^{42}$ erg/s in GP 1 and GP 2

• the X-ray excess needs to be of the physical origin
 • possible explanations include AGN (IMBH), ULXs, IMF?
 • is not present in all GPs, not simply related to SFR or metallicity

• more deep X-ray observations of similar sources desired

• more details in our recent paper:

Thank you very much for your attention!!!
Measured X-ray luminosity

\[\log_{10}(L_x [\text{2-10 keV}]/\text{SFR}) \]

- LSFGs - Colbert et al. (2004)
- LSFGs - Mineo et al. (2011)
- LIRGs/ULIRGs - L10, hw11
- LBAs - Brorby et al. (2016)
- GPs - Brorby et al. (2017)
- Stacked LBGs - Basu-Zych et al. (2013)
- GPs - This work

- LMXB dominated
- HMXB dominated

- GP1
- GP2
- GP3

- Mineo et al. (2012)

\[\log_{10}(L_x [\text{2-10 keV}]/\text{SFR}) \]
Comparison of different SFR methods
XMM-Newton look at Green Peas

• XMM-Newton observed three GPs (PI M. Ehle)
 • sources selected as purely star-forming according to the BPT classification
 • highest SFR ($SFR \approx 20-60 \, M_\odot/yr$) – to maximize chance of X-ray detection

<table>
<thead>
<tr>
<th>source</th>
<th>redshift</th>
<th>SFR [M_\odot/yr]</th>
<th>Metallicity Log[O/H] + 12</th>
<th>Net count rate (0.3-10 keV) [10^{-3} cts/s]</th>
<th>L_x (0.5-8 keV, rest frame) [10^{42} erg s^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDSSJ074936.7+333716 (GP 1)</td>
<td>0.2733</td>
<td>58.8</td>
<td>8.3</td>
<td>3.1 ± 0.7</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>SDSSJ082247.6+224144 (GP 2)</td>
<td>0.2162</td>
<td>37.4</td>
<td>8.1</td>
<td>6.4 ± 0.7</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>SDSSJ133928.3+151642 (GP 3)</td>
<td>0.1920</td>
<td>18.8</td>
<td>8.1</td>
<td>-</td>
<td>< 0.13</td>
</tr>
</tbody>
</table>
Measured X-ray luminosity

- GP 1 and GP 2 are above the L_X-SFR-metallicity correlation based on Brorby et al. 2016
- their X-ray excess is of order of 10^{42} erg/s