Green Peas – the X-ray brightest star forming galaxies?

Jiří Svoboda¹, Vanesa Douna², Ivana Orlitová¹, Matthias Ehle³, Annika Franeck¹, Richard Wünsch¹

¹ Astronomical Institute of the Czech Academy of Sciences, Prague ²IAFE, CONICET-UBA, Buenos Aires ³ESAC, Villanueva de la Cañada

X-ray Astronomy 2019, Bologna, 10th Sep 2019

Green Peas (GPs)

- compact, low-mass ($\approx 10^9 M_{\odot}$), highly star-forming ($\approx 10 M_{\odot}/yr$) galaxies at redshift z $\approx 0.2-0.3$ (Cardamone et al., 2009)
- strong UV Lyα lines, comparable to high-z starburst galaxies known as Lyman-Alpha Emitters (Henry et al. 2015, Verhamme et al. 2017, Orlitová et al. 2018)
- some were found to be leaking Lyman continuum (Verhamme et al. 2017, Izotov et al. 2018)

Lyman Continuum (LyC) escape

- LyC efficiently ionizes hydrogen atoms
- LyC leakage from star-forming galaxies could play an important role in Re-ionisation of the Universe
 - quasars represent a competitive scenario
- LyC escape reported in several GPs
 - the fraction of LyC escape varies from 5 to 70% (Izotov+18)
 - star forming galaxies numerous in early Universe, 20% of leakage shoud be sufficient (Yajima+09, Paardekooper+15)
 - GPs share the same properties with high-z star-forming galaxies and thus can be considered as their low-redshift analogs

Optical characteristics of Green Peas

- optical sky survey with SDSS
 - GPs discovered by citizen project on galaxy classification
- most GPs are purely starforming galaxies according to the optical lines
- what are their X-ray properties?

Our project with XMM-Newton

- XMM-Newton observed three GPs (PI M. Ehle)
 - sources selected as purely star-forming according to the BPT classification
 - highest SFR (SFR \approx 20-60 M_o/yr) to maximize chance of X-ray detection

source	redshift	SFR ^a [M _o /yr]	Metallicity ^b Log[O/H] + 12	Net count rate [10 ⁻³ cts/s]	L _x (0.5-8 keV, rest frame) [10 ⁴² erg s ⁻¹]
SDSSJ074936.7+333716 (GP 1)	0.2733	58.8	8.3	3.1 ± 0.7	1.2 ± 0.4
SDSSJ082247.6+224144 (GP 2)	0.2162	37.4	8.1	6.4 ± 0.7	1.2 ± 0.3
SDSSJ133928.3+151642 (GP 3)	0.1920	18.8	8.1	-	< 0.13
^a SER determined from Hg (Cardamo	^b we measured metallicity based on O3N2 method (Pettini&Pagel 04)				

^a SFR determined from H α (Cardamone+09)

^b we measured metallicity based on O3N2 method (Pettini&Pagel, 04) 03N2 method employs [O III] λ 5007/Hβ and [N II] λ 6583/Hα emission line ratios

X-ray images

X-ray spectra

- different spectral slope:
 - Γ ≈ 3 for GP1
 - Γ ≈ 2 for GP 2

Measured X-ray luminosity

- **GP 1** and **GP 2** are largely above different L_X-SFR- (metallicity) empirical relations
- their X-ray excess is of order of 10⁴² erg/s
- GP 3 only upper limit consistent with predictions

Comparison with other star-forming galaxies

- L_x-SFR-metallicity relation based on *Brorby et al. 2016*
- GP 1 and GP 2 are significantly above the correlation
- are X-ray brighter than Lyman-Break Analogs, Lyman-Break Galaxies, Green Pea Analogs, or other nearby star forming galaxies

- stochasticity?
 - cannot explain dispersion at high SFR
 - Gilfanov+04 showed that the probability of detecting $L_x = 2 < L_x > is p < 0.001$ for SFR $\approx 40 M_{\odot}/yr$ (see also, Justham & Schawinski 12), our GPs have SFR $\approx 20-60 M_{\odot}/yr$

- stochasticity? X
- larger number of HMXBs? (due to different IMF?)
 - number of HMXBs: N ≈ 13 SFR (Gilfanov & Merloni, 2014)
 - measured L_x is at least 4-6x larger than predicted
 - \rightarrow SFR from L_x excess is SFR \approx 300 M_o/yr

	SFR (from Hα)	N (HMXB) expected	N (HMXB) from L _x excess
GP 1	58.8	764	3000
GP 2	37.4	486	3400

- stochasticity? X
- larger number of HMXBs?
- ULXs? SNe?
 - observed in star forming galaxies (Basu-Zych+13, Kaaret+17)
 - X-ray luminosity of ULXs is 10³⁹-10⁴¹ erg/s, at least 10-1000 ULXs needed to explain the observed X-ray excess
 - luminous SNe? (see talk by Dwarkadas)
 - for SFR \approx 50 M_o/yr star with M > 8M_o every 2-3 years

- stochasticity? X
- larger number of HMXBs? ?
- ULXs? SNe? ?
- hot gas?

Explanation of the X-ray excess – hot gas?

• simulations of hot gas X-ray luminosity from star clusters do not reach the observed luminosity of GPs

Franeck et al., in prep.

- stochasticity? X
- larger number of HMXBs? ?
- ULXs? Sne? ?
- hot gas? X
- AGN?

Explanation of the X-ray excess – AGN?

- stochasticity? X
- larger number of HMXBs? ?
- ULXs? SNe? ?
- hot gas? X
- AGN?
- the excess is present in two out of three GPs
 - GP2 and GP3 very similar in optical light, but largely different in X-rays
 - easiest to be explained by an AGN (on/off), probably with M_{BH} <10⁵ M_{\odot}

Conclusions

- XMM-Newton observations of three Green Pea galaxies showed a significant X-ray excess of L_x ≈ 10⁴² erg/s in GP 1 and GP 2
- the X-ray excess needs to be of the physical origin
 - possible explanations include AGN (IMBH), ULXs, IMF?
 - is not present in all GPs, not simply related to SFR or metallicity
- more deep X-ray observations of similar sources desired
- more details in our recent paper:

Svoboda J., Douna V., Orlitová I. & Ehle M., 2019, ApJ, 880, 144S

Thank you very much for your attention!!!

Measured X-ray luminosity

Comparison of different SFR methods

XMM-Newton look at Green Peas

- XMM-Newton observed three GPs (PI M. Ehle)
 - sources selected as purely star-forming according to the BPT classification
 - highest SFR (SFR \approx 20-60 M_o/yr) to maximize chance of X-ray detection

source	redshift	SFR [M _o /yr]	Metallicity Log[O/H] + 12	Net count rate (0.3-10 keV) [10 ⁻³ cts/s]	L _x (0.5-8 keV, rest frame) [10 ⁴² erg s ⁻¹]
SDSSJ074936.7+333716 (GP 1)	0.2733	58.8	8.3	3.1 ± 0.7	1.2 ± 0.4
SDSSJ082247.6+224144 (GP 2)	0.2162	37.4	8.1	6.4 ± 0.7	1.2 ± 0.3
SDSSJ133928.3+151642 (GP 3)	0.1920	18.8	8.1	-	< 0.13

Measured X-ray luminosity

 GP 1 and GP 2 are above the L_X-SFRmetallicity correlation based on *Brorby et al.* 2016

 their X-ray excess is of order of 10⁴² erg/s