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Accretion disc winds

* Winds discovered in many
different types of accreting
systems

* X-ray binaries, AGNs, ULXs

* The fastest outflows have potential
to affect their surroundings greatly
- AGN feedback + ULX bubbles

* Plethora of possible launching
mechanisms

* Radiation pressure, line driving,
magnetic forces, thermal driving




Accretion disc winds in X-ray binaries

* Blueshifted ionised absorption - GROJ1655-40
features ubiquitous in high o
inclination soft state black hole
XRBs, also seen in multiple
neutron star systems

* Launching mechanism

* Radiation pressure on electrons
insufficient, wind too ionised for line-
driving

* Compton heating and magnetic fields
strong candidates for wind driving

* Solid angle

* Could be as small as 5-10° from the
disc
* Governs the mass outflow rate

Miller et al. (2008), Ponti et al. (2012), Diaz Trigo et al. (2012)



Hercules X-1

* Famous high inclination
neutron star X-ray binary

* Cyclotron resonance feature
at 37 keV

* magnetic field of 1012 G
truncating the accretion disc at
~1000 Rg

* Characteristic 35 day period of
flux variations — almost edge-
on precessing warped disc

* Importantly: large archive of
XMM-Newton observations

Giacconi et al. (1971), Trimper et al. (1978), Hickox
et al. (2005), Leahy & Igna 2010
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Absorption lines in XMM
spectra




Absorption lines in XMM
spectra

Observation 0783770601




lonised wind in the high
state

Blueshifted absorption detected in

9 out of 10 high state XMM 0673510601

observations
0134120101

Low state/short high observations:

. . o . .. . 0153950301
no significant detection in individual

exposures or in stacked data | G
' ' - PR ISTIE i 0673510901
Wind velocity between 200 and : 0673510501
1000 km/s —t—
0783770601
Material highly ionised, ionisation
varies betweenlog & = 3 — 5 AL
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Correlations of wind properties
with ionising luminosity, orbital and
super-orbital phase
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Distance and wind mass outflow rate

% Use the ionisation parameter and column density:

* 5= iﬂ‘f? Lion — 1-1000 Ryd luminosity
* ny = nAR = nRSR OR — relative thickness of absorber

* Estimate the distance from the ionising source:

- R =7Zn §p
nH§
* The mass outflow rate: % — wind launch solid angle
« M =pAv = Cvumpnﬁﬁ}nﬁ’zv Cy — clumping factor

v Cy— 1 — mean particle weight



Distance
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Mass outflow rate
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Is the super-orbital period driving the
correlations?

* If super-orbital variation drives Iﬁgfrgcfsrﬁg
p _

the correlations, we are
measuring the variation of
vertical wind structure

* Can estimate the solid angle , |
corrected mass outflow rate = | .
A e e illuminated disk

region

Hickox et al. (2005)



Is the super-orbital period driving the
correlations?

* If super-orbital variation drives Using Lun, £, v
the correlations, we are
measuring the variation of
vertical wind structure

* Can estimate the solid angle

corrected mass outflow rate 0153950301

* Assume a simple dependence
between phase and inclination,
and maximum inclination = 5°

* Mass outflow rate = 60-70% of
mass accretion rate through the

disc 0.05 0.1
Super-orbital phase
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Conclusions

* We significantly detect ionised wind in the spectrum of
Hercules X-1 during most XMM-Newton observations of its
high state

* The wind originates in the accretion disc and is launched by
Compton heating of the outer disc or by magnetic fields

* The wind ionisation varies significantly with both the
luminosity and super-orbital phase of Her X-1

* If the wind variability is driven by the super-orbital phase,
we are scanning variations in the wind vertical structure
and can infer the solid-angle corrected mass outflow rate to
be 60-70% of mass accretion rate



Extra Slides



Hercules X-1

SOURCE IN HERCULES (2U1705+34)
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A circumbinary wind in Her
X-17

* Blueshifted absorption lines found in UV

* Origin: a circumbinary wind launched from
the irradiated side of secondary?

(Narrow)
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High state X-ray spectrum
of Her X-1

Observation 0673510601 Observation 0673510601
Best-fitting continuum Best-fitting continuum
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Methods and detection
significance

Observation 1D AC-stat

Fit pn and RGS data with the final continuum model:
* hot X (comptt + bb + 2 gauss + 3 gauss + cie)

Fit the continuum model, recover C-stat

Then add the photo-ionised wind component pion, fit
and recover fit improvement AC-stat

AC-stat determines the detection significance, AC-
stat>25 usually considered a significant detection

Low state observations: no significant detection in
individual exposures or in stacked data

0134120101
0153950301
0673510501
0673510601
773510801
3510901
3770501
3770601

0783770701

10.96
26.00
88.20
34.69
2.72
37.20
49.86
81.67

15.13




Wind launching
mechanism

e Compton heating of the outer accretion disc
* Awind is launched above a critical luminosity: L., =

1
0.03(T;¢/108K) 2L

== ~ 3 keV ~ 3.5 x 107K
* For Her X-1 in high state, L, = 1.1 X 1037erg/s is

satisfied

where T =

* The wind should be launched at radii larger than:

GM
« R>0.1—L"F
kTic

~ 8x10% cm

* Alternatively, wind could be launchiedfegnetiealyss
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Photon pile-up

* Brightest observations could be
affected by piled-up (but unlikely to
introduce absorption lines)

* Average count rates up to 800 cts/s in
pn (timing mode), up to 20 cts/s in
RGS

* Least affected is RGS1

* Using just RGS1, at least one
observation still shows significant
detection of wind (AC-stat = 33.12)

Flux / Arbitrary Units

Observation 0673510501 - RGS1 only

2nd order

2nd order

------

gt |
e =

Continuum
Continuum + Wind
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Wind parameters vs ionising
luminosity
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Wind parameters vs orbital
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Wind parameters vs super-
orbital phase
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Abundance ratios In the
wind

* Use the wind absorption lines to constrain the

abundances in the system

* Simultaneously fit 5 observations, fit N, O, Ne, Fe
(fix either N or Fe to 1), other elements fix to 1 or O



Abundance ratios In the
wmd

Use the wind absorption lines to constrain the
abundances in the system

* Simultaneously fit 5 observations, fit N, O, Ne, Fe
(fix either N or Fe to 1), other elementsfixto 1 or
0

* Confirm the previous results of N/Ox~Ne/O= 4

* Surprisingly also find very high Fe/O=10

1
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0

2

Fit improvement
upon freeing
abundances:
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Other elements=1 Other elements=0

Jimenez-Garate+05
Other elements=1  Other elements=0
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