

FONDS MINISTERIUM FÜR WISSENSCHAFT, FORSCHUNG UND KUNST

X-raying stellar winds in high mass X-ray binaries

Victoria Grinberg, IAAT Tübingen

with N. Hell, **M. Lomaeva, R. Amato,** M. Hirsch, I. El Mellah, P. Kretschmar, J. Wilms, M.A. Nowak, K. Pottschmidt, M. Leutenegger, S. Martínez Núñez & the **X-Wind collaboration**

One astronomer's noise -

Winds in massive stars

Rstar

El Mellah+ 2018; Sundqvist+ 2017

Line-driven winds:

- mass loss $10^{-7} 10^{-4} M_{\odot}/{
 m yr}$
- terminal velocity up to 3000 km/s

important for:

- star formation
- enrichment
- evolution of star itself

unstable to velocity perturbations \Rightarrow rapid growth of perturbation \Rightarrow strong shocks \Rightarrow wind clumping

Multiple lines of evidence for wind clumping from single stars, but no way to probe clump structure

EBERHARD KARLS

UNIVERSITAT

Wind properties:

- clumps: structure, size, shape & occurrence
- clumping onset
- wind acceleration zone
- wind's response to changes in irradiation

Accretion structure:

- accretion & photoinization wake
- accretion rate variability
- clumpy accretion
- disk formation
- mass loss rates in O/B stars
 accretion history of HMXBs

stellar winds & HMXB review: Martínez-Núñez+ 2017

Probing the innermost parts of the wind

Vela X-1/HD 77581 (B0.5 lb) Cyg X-1/HDE 226868 (O9.7lab)

- neutron star
- 9d eclipsing orbit
- accretion/photoionization wake

- black hole
- 5.6d orbit, orbital inclination ~30°
- focussed wind accretion

Clumpy wind:

Clumpy wind:

Clumpy wind:

Chandra HETG observations

divided in four absorption stages using color-color diagrams

stronger absorption \Rightarrow lower ionization stages of Si & S

same Doppler-shift for all lines

Hirsch+ 2019

Cyg X-1: Clump structure

divided in four absorption stages using color-color diagrams

stronger absorption \Rightarrow lower ionization stages of Si & S

same Doppler-shift for all lines

Hirsch+ 2019

Cyg X-1: Clump structure

stronger absorption \Rightarrow lower ionization stages of Si & S

same Doppler-shift for all lines

 \Rightarrow structured clumps with cold cores

strong dip dip weak dip non-dip

Vela X-1: multiphase medium

Vela X-1: multiphase medium

EBERHARD KARLS

Vela X-1: wind's reaction to a flare

Victoria Grinberg: X-raying stellar winds in high mass X-ray binaries

Vela X-1: wind's reaction to a flare

Victoria Grinberg: X-raying stellar winds in high mass X-ray binaries

 high mass X-ray binaries are unique tools to probe massive star winds & accretion structure
 absorption-resolved & time resolved analyses necessary
 Athena is going to revolutionize the field

See also poster #228 by Silvia Martínez Núñez!