INTEGRAL observations of gravitational wave events

C. Ferrigno
On behalf of the INTEGRAL Multi Messenger Collaboration

V. Savchenko, C. Ferrigno, E. Bozzo, T. Courvoisier (ISDC, University of Geneva, CH),
C. Sanchez-Fernandez (ESA), D. Götz, P. Laurent, S. Schanne (CEA, France),
A. Coleiro, A. Goldwurm (APC, France),
S. Mereghetti (INAF, IASF, Milano, Italy),
J. Rodi, P. Ubertini, L. Natalucci, F. Panessa, F. Onori, A. Bazzano (IAPS/INAF, Italy),
J. Chenevez, S. Brandt (DTU, Denmark), R. Diehl, A. von Kienlin (MPE, Germany),
A. Domingo, J. M. Mas-Hesse (CAB/CSIC-IN TA, Spain),
L. Hanlon, A. Martin-Carrillo, M. Doyle (UCD, Ireland),
A. Lutovinov, R. Sunyaev, S. Molkov (IKI, Russia),
J.-P. Roques, E. Jourdain, P. von Ballmoos (IRAP, France)
2002 - **, operations currently approved until December 2022

2.7 days orbit with 85% useful observing time above radiation belts

Only very small fraction of sky occulted by Earth

All data transmitted to ground in real time and analysed for GRB within a few seconds
3 - 8000 keV pointing field of view (from 3x3deg at 3-30 keV to 30x30deg above 25 keV)

sub-arcmin imaging, good spectral resolution

> 100 keV all-sky
almost no imaging or spectral resolution
Challenges of all-sky detection with INTEGRAL SPI-ACS

- Exceptional GRB detection capability
- Poor localization and spectral characterization
- We do not usually send GCN circulars with SPI-ACS detections
- We **opted for interoperability**, joining observations with other missions, e.g. by **IPN triangulation**.
- Full public data available through an **online analysis, APIs**.
10 BBH + 1 BNS in LIGO/Virgo O1 & O2

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Type</th>
<th>E_{GW} (Mo)</th>
<th>D (Mpc)</th>
<th>Upper Limit 75-2000 1 sec</th>
<th>$E_{1keV-10MeV} / E_{GW}$</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>150914</td>
<td>BBH</td>
<td>3.1</td>
<td>430</td>
<td>< 1.3 10^{-7}</td>
<td>< 7 10^{-7} (best limit)</td>
<td>GBM burst not seen in SPI/ACS Pointed follow-up</td>
</tr>
<tr>
<td>151012</td>
<td>BBH</td>
<td>1.5</td>
<td>1060</td>
<td>< 1.3 10^{-7}</td>
<td>< 9 10^{-6}</td>
<td>Announced 6 months later</td>
</tr>
<tr>
<td>151226</td>
<td>BBH</td>
<td>1</td>
<td>440</td>
<td></td>
<td></td>
<td>Perigee</td>
</tr>
<tr>
<td>170104</td>
<td>BBH</td>
<td>2.2</td>
<td>960</td>
<td>< 2 10^{-7}</td>
<td>< 8 10^{-6}</td>
<td>AGILE/MCAL event not seen in SPI/ACS</td>
</tr>
<tr>
<td>170608</td>
<td>BBH</td>
<td>0.9</td>
<td>320</td>
<td>< 4.3 10^{-7}</td>
<td>< 1 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>170729</td>
<td>BBH</td>
<td>4.8</td>
<td>2750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170809</td>
<td>BBH</td>
<td>2.7</td>
<td>990</td>
<td></td>
<td></td>
<td>Perigee</td>
</tr>
<tr>
<td>170814</td>
<td>BBH</td>
<td>2.7</td>
<td>580</td>
<td>< 2.1 10^{-7}</td>
<td>< 2 10^{-6}</td>
<td>Pointed follow up</td>
</tr>
<tr>
<td>170817</td>
<td>BNS</td>
<td>0.025</td>
<td>40</td>
<td>1.4 10^{-7}</td>
<td></td>
<td>Burst detected Pointed follow-up 6d long</td>
</tr>
<tr>
<td>170818</td>
<td>BBH</td>
<td>2.7</td>
<td>1020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170823</td>
<td>BBH</td>
<td>3.3</td>
<td>1850</td>
<td></td>
<td></td>
<td>Perigee</td>
</tr>
</tbody>
</table>
GW 170817

BNS at 42Mpc

INTEGRAL short GRB was 2 s after the GW and lasted 0.1 s

S/N = 4.7

Association significance with GW is 3.2σ and 4.2σ with the Fermi-GBM GRB

Fluence (1.4 ± 0.4 ± 0.6) × 10-7 erg cm-2 (75-2000 keV)

LVC, Fermi, INTEGRAL 2017; Goldstein+ 2017; VS+ 2017
Targeted search of excesses in INTEGRAL detector light curves

Automatic reception of alerts triggers an automatic pipeline that:
1. bins the lightcurve at different time scales;
2. computes (running) mean and variance;
3. searches in a +/- 300s range time bins with signal in excess of a certain S/N (e.g., 3) [and computes likelihood to be a cosmic ray interaction].
4. counts how many similar excesses happen in the light curve extending the time range to days
5. computes the False Alarm Probability as function of Delta T0 and S/N [plus CR likelihood].
6. Correct for number of trials.
Pedagogical example

- close to T0, it is unlikely to find events with high S/N, extending the range, it is more likely to find such an event
- FAP decreases dramatically for a higher S/N event
19 BBH + 3 BNS + 2 BHNS in O3 so far...

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Distance (Mpc)</th>
<th>90% Error Region</th>
<th>Energy (erg/cm²) 75-2000 1 sec</th>
<th>Gamma E</th>
<th>Follow-up Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S190408an</td>
<td>?</td>
<td>387</td>
<td>1473</td>
<td>< 2.5 10e-7</td>
<td>< 7 10e49</td>
<td>Pointed follow-up</td>
</tr>
<tr>
<td>S190412m</td>
<td>BBH</td>
<td>156</td>
<td>812</td>
<td>< 2.9 10e-7</td>
<td>< 3 10e49</td>
<td></td>
</tr>
<tr>
<td>S190425z</td>
<td>BNS</td>
<td>7461</td>
<td>156</td>
<td>< 4.0 10e-7</td>
<td>< 1 10e48</td>
<td>Excess has S/N 3.7 on a 1 s timescale and happened 6 s after the GW. The association significance is 1.5 sigma. Pointed follow-up</td>
</tr>
<tr>
<td>S190426c</td>
<td>NSBH ?</td>
<td>1131</td>
<td>377</td>
<td>< 1.7 10e-7</td>
<td>< 3 10e48</td>
<td>Terrestrial origin ?</td>
</tr>
<tr>
<td>S190503bf</td>
<td>BBH</td>
<td>448</td>
<td>421</td>
<td>< 2.4 10e-7</td>
<td>< 5 10e48</td>
<td></td>
</tr>
<tr>
<td>S190510g</td>
<td>BNS</td>
<td>1166</td>
<td>277</td>
<td>< 4.0 10e-7</td>
<td>< 1 10e48</td>
<td>Perigee</td>
</tr>
<tr>
<td>S190512at</td>
<td>BBH</td>
<td>252</td>
<td>1388</td>
<td>< 2.7 10e-7</td>
<td>< 1 10e50</td>
<td>Perigee</td>
</tr>
<tr>
<td>S190513bm</td>
<td>BBH</td>
<td>691</td>
<td>1987</td>
<td>< 2.6 10e-7</td>
<td>< 1 10e50</td>
<td></td>
</tr>
<tr>
<td>S190517h</td>
<td>BBH</td>
<td>939</td>
<td>2950</td>
<td>< 2.7 10e-7</td>
<td>< 3 10e50</td>
<td></td>
</tr>
<tr>
<td>S190519bj</td>
<td>BBH</td>
<td>967</td>
<td>3154</td>
<td>< 2.9 10e-7</td>
<td>< 4 10e50</td>
<td></td>
</tr>
<tr>
<td>S190521g</td>
<td>BBH</td>
<td>765</td>
<td>3931</td>
<td>< 2.3 10e-7</td>
<td>< 5 10e50</td>
<td></td>
</tr>
<tr>
<td>S190521r</td>
<td>BBH</td>
<td>488</td>
<td>1136</td>
<td>< 4.0 10e-7</td>
<td>< 7 10e49</td>
<td></td>
</tr>
<tr>
<td>S190602aq</td>
<td>BBH</td>
<td>1172</td>
<td>797</td>
<td>< 3.8 10e-7</td>
<td>< 3 10e49</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Type</td>
<td>Distance</td>
<td>Redshift</td>
<td>1s Flux</td>
<td>100s Flux</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>S190630ag</td>
<td>BBH</td>
<td>8493</td>
<td>1059</td>
<td><1.9e-7</td>
<td><2.5e49</td>
<td></td>
</tr>
<tr>
<td>S190701ah</td>
<td>BBH</td>
<td>67</td>
<td>1045</td>
<td><1.6e-7</td>
<td><2e49</td>
<td></td>
</tr>
<tr>
<td>S190706ai</td>
<td>BBH</td>
<td>1100</td>
<td>5700</td>
<td><1.7e-7</td>
<td><7e50</td>
<td></td>
</tr>
<tr>
<td>S190707q</td>
<td>BBH</td>
<td>1375</td>
<td>818</td>
<td><2.6e-7</td>
<td><2e49</td>
<td></td>
</tr>
<tr>
<td>S190718y</td>
<td>terrestrial</td>
<td>7246</td>
<td>227</td>
<td><2.5e-7</td>
<td><1.5e48</td>
<td></td>
</tr>
<tr>
<td>S190720a</td>
<td>BBH</td>
<td>1461</td>
<td>1061</td>
<td><1.5e-7</td>
<td><2e49</td>
<td></td>
</tr>
<tr>
<td>S190727h</td>
<td>BBH</td>
<td>841</td>
<td>2022</td>
<td><1.8e-7</td>
<td><1e50</td>
<td></td>
</tr>
<tr>
<td>S190728q</td>
<td>MassGap</td>
<td>543</td>
<td>795</td>
<td><2.6e-7</td>
<td><2e49</td>
<td></td>
</tr>
<tr>
<td>S190814bv</td>
<td>NSBH</td>
<td>38</td>
<td>276</td>
<td><3e-7</td>
<td><2e48</td>
<td></td>
</tr>
<tr>
<td>S190828j</td>
<td>BBH</td>
<td>603</td>
<td>2280</td>
<td><1.7e-7</td>
<td><1e50</td>
<td></td>
</tr>
<tr>
<td>S190828l</td>
<td>BBH</td>
<td>948</td>
<td>1600</td>
<td><1.8e-7</td>
<td><5e49</td>
<td></td>
</tr>
<tr>
<td>S190901ap</td>
<td>BNS</td>
<td>13613</td>
<td>242</td>
<td><1.7e-7</td>
<td><1.2e48</td>
<td></td>
</tr>
</tbody>
</table>

One marginal event (S/N 5.22, FAP 3.27 equivalent sigma) at 0.05s time scale at T0+201.01.

Unlikely associated event FAP 4%, S/N=4 at 3s scale, at T0+41s LX=1.8+/−0.4+/−0.6 10e49 erg/s

2 s scale, T-T0=17.2 s, S/N=3.7 FAP=3.4%

19 BBH + 3 BNS + 2 BHNS in O3 so far...
GW 190425z: a binary neutron star merger in LIGO-Virgo O3 at 150 Mpc

Excess has S/N 3.7 on a 1 s timescale and happened 6 s after the GW. The association significance is 1.5 sigma, making it unlikely to be correlated. Compared to GW170817, the timescale is 3 times larger, delay larger, and S/N lower.
Fermi GBM-190816: discovery and localization of subthreshold GRB-GW candidate

INTEGRAL non-detection favors the region found in the independent refinement by Fermi-GBM and LIGO-Virgo teams.

19/08/20 INTEGRAL non-detection constraint

19/08/24 Updated map
Marginal event: S/N 5.22, FAP 3.27 equivalent sigma) 0.05s time scale at T0+201.01 s
S190814bv NSBH

FAP threshold 0.1

Counts/s

Seconds since 2019-08-14T21:10:39.013334
as O3 advances, the prospects for joint detections can be revised.
see also Hosseinzadeh et al 2019, Saleem et al 2019
Possible Hard X-ray emission from BNS mergers

Internal GRB Jet Dissipation: regular prompt GRB

Structured Jet Internal Dissipation: weak prompt GRB (Found)

External GRB Jet Dissipation: hard X-ray afterglow

Radioactive decays of heavy elements in gamma-ray lines

Metastable merger product: young magnetar, re-energising the outflow

anything else?...
SUMMARY

• INTEGRAL unique capabilities for multi-messenger prompt observations and follow-up
 – 85% duty cycle: uninterrupted 2.7-day long observations in stable background
 – Highly competitive all-sky sensitivity, down to 10^{-7} erg cm$^{-2}$ s$^{-1}$ (75 - 2000 keV) with complementary role of every instrument
 – Sensitivity for broad and narrow gamma-ray lines in follow-up observations

• Detection of GW170817

• In O1-O2, limits for 19 (out of 24) events (with whole error region coverage)

• Fast pipeline processing and efficient team organized for rapid reaction.

• New ideas are sought to find new events in hard X-ray, especially in early data (T_0 ..).
EXTRA SLIDES
Best all-sky sensitivity by combining all instruments

Sensitivity maps (light color is best)

GW localization

Earth occultation (worst case)
GW 170817

Fermi + INTEGRAL Triangulation
GRBs in the IBIS field of view

about 6 times per year, we detect a GRB in the Imager field of view and we can provide immediate localisation at 3 arcmin plus spectra
GW 190425z: a binary neutron star merger in LIGO-Virgo O3 at 150 Mpc

Excess has S/N 3.7 on a 1 s timescale and happened 6 s after the GW. The association significance is 1.5 sigma, making it unlikely to be correlated.

Compared to GW170817, the timescale is 3 times larger, delay larger, and S/N lower. Assuming it is real, the comparison with Fermi-GBM and Konus-Wind upper limits would help to constrain the localisation within the LIGO-Virgo map.
These follow-up can constrain the presence of magnetar flares in the hours after the event.

VS+2017
GW 170817
PROMPT EMISSION
GW 150914

SPI-ACS light curve (>75 keV) around GW150914 trigger time

Savchenko+ 2016
GW 170104

Interesting event in AGILE/MCAL 0.46 s before T_0
(Verrecchia+ 2017)

E2 post-trial coincidence probability between 2.4σ and 2.7σ

Fluence $\sim 10^{-7}$ erg/cm2
(0.4-40 MeV)
GW 170104

SPI/ACS ul on possible AGILE event
(for PL spectrum with slope -2)

Only within red contours u.l. compatible with AGILE event fluence

Savchenko+ 2017b
GW 150914

SPI-ACS 3σ upper limit in 1 second

$$F_{75-2000} < (1.2 - 1.7) \times 10^{-7} \text{ erg/cm}^2 \text{ for } 95\% \text{ of error region}$$

for $$\alpha = -0.5, \ \beta = -2.5, \ E_p = 1.5 \text{ MeV}$$
Relative sensitivity as a function of zenith angle

Short hard burst

1 sec
CPL $\alpha = -0.5$ $E_p = 600$ keV

Savchenko+ 2017
Relative sensitivity as a function of zenith angle

Long burst

8 sec

$\alpha = -1 \quad \beta = -2.5 \quad E_p = 300 \text{ keV}$

Savchenko+ 2017