

Future NASA X-ray Astronomy Missions and Concepts

Rob Petre Director of Astrophysics NASA / Goddard Space Flight Center

Presented by Azita Valinia Deputy Director, Astrophysics Flight Projects NASA Goddard Space Flight Center

NASA X-ray missions in the 2020's: Takeaways

- NASA has one new X-ray mission under development for 2020's IXPE (Weisskopf talk)
- NASA is relying primarily on its existing fleet of missions and on collaborations with ESA and JAXA to advance X-ray astronomy
- Promising concepts exist for MIDEX class X-ray missions for the latter half of the decade
- CubeSats and SmallSats are emerging as a new opportunity
- NASA funded X-ray instrumentation has made substantial progress over the past decade
- The future of large NASA X-ray missions depends on the outcome of the 2020 decadal survey, now underway
 - Lynx
 - X-ray probe-class missions

	NASA X-ray missions in the 2020's and beyond					
		New NASA	Missions			
	2)20	2025	2030	2035		
IXPE						
	I You Ar	e Here				

- NASA has only one X-ray mission under development IXPE, scheduled for a 2021 launch and a two-year nominal mission
- Mission extension likely if the baseline mission is successful
- See M. Weisskopf talk

	NASA X-ray missions in the 2020's and beyond				
		Current NASA Missions			
	2020	2025	2030	2035	
IXPE					
Chandra					
Swift					
NuSTAR					
NICER					
	- YOU AR	e nere			

- NASA has four X-ray missions in extended operations Chandra, Swift, NuSTAR, NICER
- All were awarded three-year extensions until 2022 in 2019 Senior Review
- Fleet is aging: Chandra is 20 years old, Swift is 15

- NASA relies on its successful partnerships with foreign space agencies like ESA and JAXA
- Partnerships on XRISM and Athena allow NASA to fulfill 2010 Decadal Survey
 goals related to IXO

ASA GODDARD SPACE FLIGHT CENTER

- NASA's astrophysics portfolio consists of competed and directed missions
- Competed missions are SMEX (~\$145M), MIDEX (~\$250M), MOO's (~\$70M), and SmallSats
 - Two SMEX and two MIDEX calls per decade, with accompanying MOO/SmallSat call
- Directed missions are large missions (e.g., Chandra) or medium ("probe-class") missions (e.g., Fermi)
 - Directed missions are strategic, defined through the decadal survey process
- Any future NASA X-ray mission must be selected through either a MIDEX/SMEX call or by the decadal survey

- NASA solicits Explorer mission proposals every 2.5 years
- One mission selected per solicitation
- Next call is for a MIDEX (PI led; ~\$250M cost cap) in late 2021
- Several X-ray missions are likely to be proposed
- Two X-ray missions did well (but were not selected) in the 2016 round:
 - Arcus high resolution grating spectroscopy in 0.2-1.5 keV band
 - STAR-X 1 degree field of view, 5 arcsec imager for transient followup and surveys

Proposed Mission: Arcus

Exploring the Formation and Evolution of Clusters, Galaxies, and Stars

SAO-led effort with an experienced team of institutions, scientists, and engineers:
Key Hardware Institutions
NASA/Ames, MIT, Penn State, MPE & FAU

Why Arcus? <u>An Order of Magnitude Improvement in</u> <u>X-ray High-Resolution Spectroscopy</u>

- •2010 Decadal Review made X-ray spectroscopy high priority.
- Key science requires gratings; next large X-ray mission (ESA's *Athena*, 2028) has *no* gratings
 Uses Silicon Pore Optics developed for Athena together with nanotech Critical Angle Transmission gratings to achieve efficient high-resolution X-ray spectroscopy.

Science Objectives

- Where are the 'missing baryons,' and more generally, how does matter cycle in and out of galaxies?
- What powers the black hole winds that can impact entire galaxies and clusters?
- How do stars & circumstellar disks form and evolve?

Arcus will find the 'missing matter' at and beyond the edges of galaxies & clusters of galaxies

Figure of merit for finding transients

- Powerful telescope for discovering faint transients
- Mirror has 1° diameter FOV with uniform 5 arcsec HPD;1,800 cm²@ 1keV and 1,270 cm²@ 0.5 keV – best figure of merit for finding transients (like GW events)
- Fast slewing spacecraft to enable high cadence observations and fast response to ToO

G J. Owringlingtion or bit for low background and fast uplink

XQCSat: Calorimeter based SmallSat to study IGM

 NASA has invested in technology development that can be used on a future strategic X-ray mission – met goals for IXO set in 2010

Prospects for a strategic NASA X-ray mission

- Beyond the Explorer program and international partnerships, the future of NASA X-ray astronomy in the 2020's depends on the outcome of the 2020 Decadal Survey of Astronomy and Astrophysics
- The 2020 Decadal Survey of Astronomy and Astrophysics is underway
- Report expected in late 2020
- The report will rank large (>\$1B) and medium (~\$0.5B-\$1B) space and ground facilities
- Previous top ranked large missions include WFIRST (2010), JWST (2000), Spitzer (1990), Chandra (1980)
- NASA instituted studies for four large mission candidates:
 - Origins Space Telescope large far IR observatory
 - LUVOIR very large successor to HST with substantial terrestrial planet finding component
 - HabEx terrestrial planet finder
 - Lynx successor to Chandra
- NASA also instituted studies of 10 "Probe-class" (<\$1B) missions, including two Xray missions (AXIS, STROBE-X) and a multiband mission with an X-ray telescope (TAP)

Candidate Large NASA Missions for 2020 Decadal

Lynx (X-rays)

NASA supported thorough studies of four large missions.
The 2020 decadal will prioritize these
Each mission costs ≥\$5B

Habitable Planet Explorer

Large UV Optical Infrared Telescope

Origins Space Telescope (far IR)

PAYLOAD & MISSION CHARACTERISTICS

- MIRROR ASSEMBLY -

THE MISSION

- Orbit: Sun-Earth L2
- . Field of regard: 85% of the sky
- Consumables: sized for a 20 year mission
- JWST-like data volume
- Communication 3× daily with DSN
- >85% Observing Efficiency

0.5" on-axis PSF, 2m² effective area at 1 keV, sub-arcsec PSF over a 22'*22' field of view.

LYNX MIRROR ASSEMBLY

HIGH DEFINITION X-RAY IMAGER An active pixel array of fine pixels covering a 22'*22' field of view with subarcsecond imaging and providing moderate spectral resolution.

LYNX X-RAY MICROCALORIMETER

An array of 1" pixels covering a 5"×5" field of view and providing a 3 eV spectral resolution. Two additional arrays optimized for finer imaging and higher spectral resolution (0.3 eV in soft band)

X-RAY GRATING SPECTROMETER

Gratings with resolving power of R > 5000 and ~ 4000 cm² of effective area across the critical X-ray emission and absorption lines of C, O, Mg, Ne, and Fe L.

- NASA funded 10 probe studies (out of >25 proposed)
- Two are X-ray specific; a third is multiband, including X-ray
- Several other X-ray probe concepts were submitted in white papers to decadal
- All probe missions will be considered equally

Probe Study	Band	Closest Predecessor
AXIS	X-ray	Chandra
CDIM	Near-mid-IR	SPHEREx, JWST
CETUS	UV	GALEX, HST
Earthfinder	Near-IR	Ground-based radial velocity
GEP	Mid-IR, Far-IR	Herschel, Spitzer
PICO	CMB	Planck
POEMMA	Cosmic rays, neutrinos	Auger
Starshade	Optical/NIR	WFIRST
STROBE-X	X-ray	RXTE, NICER
ТАР	X-ray, IR, gamma	Swift
Farside [#]	Radio	LWA, MWA , LOFAR, SunRISE
Exo-C*	Optical/NIR	WFIRST
Exo-S*	Optical/NIR	WFIRST

(From M. Elvis white paper)

Advanced X-ray Imaging Satellite (AXIS)

- X-ray imager with 10x Chandra area, much larger field of view
- Low earth orbit, low background for surface brightness studies; rapid response for transient studies

Angular resolution (HPD, at 1 keV)on-ax is 15' off-axis $0.4''$ $2 \times$ sharper 28 \times sharperEnergy band $0.2-12 \text{ keV}$ SimilarEffective area (mirror + detector)at 0.5 keV 7000 cm^2 $15 \times$ more collecting area $6 \times$ more collecting areaEnergy Resolution Image Resolutionat $1.0 (6.0) \text{ keV}$ $60 (150) \text{ eV}$ SimilarField of View (FoV)HPD $\lesssim 1''$ $24' \times 24'$ $70 \times$ better for < 1'' imaging $50 \times$ better sky/backgroundSlew Rate $120^{\circ}/5 \min$ Comparable to Swift	Parameter		Value	AXIS vs. Chandra
Energy band $0.2-12 \text{ keV}$ SimilarEffective areaat 0.5 keV 7000 cm^2 $15 \times \text{ more collecting area}$ (mirror + detector)at 6.0 keV 1500 cm^2 $6 \times \text{ more collecting area}$ Energy Resolutionat $1.0 (6.0) \text{ keV}$ $60 (150) \text{ eV}$ SimilarTiming Resolution< 50 ms	Angular resolution (HPD, at 1 keV)	on-axis 15' off-axis	0.4″ 1″	2× sharper 28× sharper
Effective areaat 0.5 keV 7000 cm^2 $15 \times \text{more collecting area}$ (mirror + detector)at 6.0 keV 1500 cm^2 $6 \times \text{more collecting area}$ Energy Resolutionat 1.0 (6.0) keV $60 (150) \text{ eV}$ SimilarTiming Resolution< 50 ms	Energy band		0.2-12 keV	Similar
Energy Resolutionat 1.0 (6.0) keV $60 (150) eV$ SimilarTiming Resolution< 50 ms	Effective area (mirror + detector)	at 0.5 keV at 6.0 keV	7000 cm ² 1500 cm ²	15× more collecting area 6× more collecting area
Timing Resolution< 50 ms $6 \times$ brighter pile-up limitField of View (FoV)HPD $\lesssim 1''$ $24' \times 24'$ $70 \times$ better for $< 1''$ imagingDetector Backgroundat 1 keV 2×10^{-4} ct/s/keV/arcmin ² $50 \times$ better sky/backgroundSlew Rate120° / 5 minComparable to Swift	Energy Resolution	at 1.0 (6.0) keV	60 (150) eV	Similar
Field of View (FoV)HPD $\lesssim 1''$ $24' \times 24'$ $70 \times$ better for $< 1''$ imagingDetector Backgroundat 1 keV 2×10^{-4} ct/s/keV/arcmin ² $50 \times$ better sky/backgroundSlew Rate $120^{\circ}/5$ minComparable to Swift	Timing Resolution		< 50 ms	6× brighter pile-up limit
Detector Background at 1 keV 2×10 ⁻⁴ ct/s/keV/arcmin ² 50× better sky/background Slew Rate 120° / 5 min Comparable to Swift	Field of View (FoV)	$HPD \lesssim 1''$	$24' \times 24'$	$70 \times$ better for $< 1''$ imaging
Slew Rate 120° / 5 min Comparable to Swift	Detector Background	at 1 keV	2×10 ⁻⁴ ct/s/keV/arcmin ²	50× better sky/background
	Slew Rate		120°/5 min	Comparable to Swift

AXIS concept study at https://arxiv.org/abs/1807.02122

GODDARD SPACE FLIGHT CENTER

STROBE-X

STROBE-X Mission				
Instrument Mass (kg)	2,706			
Spacecraft Bus Mass (kg)	1,787			
Propellant (kg)	555			
Total Mass (kg)	4,998			
Orbit	LEO, 550 km altitude			
Launcher	Falcon 9 FT			
Launcher Capacity to LEO (kg)	5130 kg to 10° inclination			
Instrument Power (W)	1,918			
Spacecraft Power (W)	1,228			
Attitude Control	3-axis stabilized, slew 15°/min			
Solar Avoidance	< 45 deg			
Data Gen/Orbit (raw, Gb)	36.0			
Duration	5+ years			

- Combines huge collecting area, high X-ray throughput, broad energy coverage, and excellent spectral and temporal resolution in a single facility.
- Characterize the behavior of X-ray sources over an unprecedentedly vast range of time scales.

STROBE-X concept study at https://arxiv.org/abs/1903.03035

Transient Astrophysics Probe (TAP)

	WFI Rate (yr ⁻¹)	XRT Rate (yr ⁻¹)	IVUT Rate		GTM rate				
Transient Type			IR (yr ⁻¹)	UV (yr ⁻¹)	(yr-1)				
Dbjective 1 – X-ray, UV and IR Counterparts to Gravitational Wave Sources									
GW NS-NS (on-axis)	20	14			20				
GW NS-NS (off-axis)		7	70	56	2				
GW SMBH-SMBH (10 ⁶ M_{\odot})		≥ 1							
GW SMBH-SMBH (10 ⁹ M_{\odot})	Several in 5 yr								
Dbjective 2 - Highest Sensitivity Time-Domain Survey of the Transient Soft X-ray / UV Sky									
cSN shock breakout	1	19		6					
etted TDEs	106	1							
Non-jetted TDEs	1	48		40					
AGN (daily / weekly)	120 / 660	1600 / 8700							
ligh-z GRBs (z>5)	25		22						

Table 2: Estimated rates of sources discovered by the TAP instruments.

- Rapid response, multi-band observatory for following up GW sources and other transients
- X-ray telescope and X-ray Lobster-eye, along with gamma-ray transient monitor and UVOIR telescope

ASA GODDARD SPACE FLIGHT CENTER

- White papers for a number of other probe concepts were submitted for consideration by the decadal survey.
- Submitted concepts include:
 - The X-ray Grating Spectroscopy Probe
 - Similar science to Arcus missing baryons, AGN outflows, stellar coronae
 - $\lambda/\Delta\lambda$ > 5000, effective area > 1000 cm2, at 653 eV, OVIII Lya
 - The High-Energy X-ray Probe
 - Successor to NuSTAR
 - Response 40 times that of any previous mission in the 10-80 keV band and > 100 times in the 80-200 keV band.
 - Science goals: Black hole growth over cosmic time; probing accreting compact object power sources; constraining stellar evolution endpoints
 - X-ray Polarization Probe
 - Successor to IXPE
 - Science goals: structure of inner accretion flow onto black holes; use neutron stars as fundamental physics laboratories; probe how cosmic particle accelerators work
 - Broadband polarimetery over the wide 0.2-60 keV bandpass in addition to imaging polarimetry from 2-8 keV

Prospects for Future NASA X-ray Missions - 1

- An optimistic scenario leads to a healthy NASA X-ray astrophysics program for decades to come – long-lived extended missions, a MIDEX, a Probe, and Lynx
- Still a worrisome gap in the late 2020's...

Prospects for Future NASA X-ray Missions - 2

- A pessimistic scenario sees current fleet turned off in 2022, no X-ray MIDEX, no X-ray Probe, and Lynx deferred to a future decade.
- A more realistic scenario lies in between these two.

GODDARD SPACE FLIGHT CENTER

- Prospects for 2020's not unlike prospects for 2010's. Then we were:
 - Relying heavily on operating missions
 - Waiting on small explorers (NuSTAR and GEMS)
 - Relying on strong international partnerships (e.g., Astro-H)
 - Waiting on decadal survey to recommend IXO
- Technology advances over the decade improve the prospects for NASA X-ray missions to make major advances
- New mission classes make possible a broader range of investigations
 - Astrophysics Probes (assuming Decadal Survey recommendation)
 - SmallSats/CubeSats
- NASA will continue to rely on a mix of operating missions, small, medium and large new missions and strong international partnerships to maintain a strong X-ray astronomy program
- Final note: X-ray astronomy is visible at the highest levels of NASA: weekly report by the Administrator highlighted a NuSTAR image of NGC 6946 featuring a flaring ULX

