

The Imaging X-ray Polarimetry Explorer

Martin C. Weisskopf on behalf of the IXPE team NASA/Marshall Space Flight Center

X-ray Astronomy 2019 September 13, 2019, Bologna, Italy

The IXPE Team

Science Advisory Team

SAT currently comprises > 80 scientists from 12 countries

*

-

- Launch April 2021 on a Falcon 9
- > 540-km circular orbit at 0° inclination
- 2-year baseline mission, 1 year extension (at least!)
- Point and stare (with dither) at pre-selected targets
- Malindi ground station primary (Singapore secondary)
- Mission Operations Center at the University of Colorado, Laboratory for Atmospheric and Space Physics
- Sciences Operations Center at MSFC
- Data archiving at NASA's HEASARC
 - No proprietary data

IXPE DEPLOYED

4.0 m focal length

The initial direction of the K-shell photoelectron is determined by the electric vector

The distribution of the photoelectron initial directions determines the degree of polarization and the position angle

$$\frac{d\sigma}{d\Omega} = f(\zeta)r_0^2 Z^5 \alpha_0^4 \left(\frac{1}{\beta}\right)^{7/2} 4\sqrt{2}\sin^2\theta \cos^2\varphi \,, \text{ where } \beta \equiv \frac{E}{mc^2} = \frac{h\nu}{mc^2}$$

DETECTOR **P**ROPERTIES

Parameter	Value
Sensitive area	15 mm × 15 mm (13 x 13 arcmin)
Fill gas and composition	DME @ 0.8 atmosphere
Detector window	50-μm thick beryllium
Absorption and drift region depth	10 mm
GEM (gas electron multiplier)	copper-plated 50-μm liquid-crystal polymer
GEM hole pitch	50 µm triangular lattice
Number ASIC readout pixels	300 × 352
ASIC pixelated anode	Hexagonal @ 50-µm pitch
Spatial resolution (FWHM)	≤ 123 µm (6.4 arcsec) @ 2 keV
Energy resolution (FWHM)	0.54 keV @ 2 keV (∝ <i>vE</i>)
Useful energy range	2 - 8 keV

MIRROR MODULE ASSEMBLY – ENGINEERING UNIT

Measured angular resolution 20 arcsec @ 2.3 and 4.5 keV

MIRROR MODULE ASSEMBLY

Property	Value
Number of modules	3
Mirror shells per module	24
Inner, outer shell diameter	162, 272 mm
Total shell length	600 mm
Inner, outer shell thickness	180, 260 μm
Shell material	Nickel cobalt alloy
Effective area per module	210 cm ² (2.3 keV) > 230 cm ² (3-6 keV)
Angular resolution	≤ 25 arcsec HPD
Detector limited FOV	12.9 arcmin
Focal length	4 m
Mass (3 assemblies)	95 kg with contingency

POLARIZATION SENSITIVITY FIGURE OF MERIT

IMAGING POLARIMETRY

• Chandra image with IXPE 30" half-power diameter

RADIO **P**ULSARS

Radio Pulsars

- Perform X-ray phase-resolved polarimetry to test models for a radio pulsar's X-ray emission
- Grey is optical, blue is IXPE

Emission geometry and processes are still unsettled.

• Competing models predict differing polarization behavior with pulse phase.

X-rays provide clean probe of geometry.

- Absorption likely more prevalent in visible band.
- Radiation process entirely different in radio band.
 - Recently discovered <u>no</u> pulse phase-dependent variation in polarization degree and position angle @ 1.4 GHz.
- 140-ks observation gives ample statistics to track polarization degree and position angle.

Microquasars

• Perform X-ray spectral polarimetry on microquasars to help localize the emission site (accretion disk, corona, jet) position angle

For a micro-quasar in an accretion-dominated state, scattering polarizes the disk emission. Polarization rotation versus energy is greatest for emission from inner disk. – Inner disk is hotter, producing higher energy X-rays.

Disk orientation from other experiments used to constrain GRX1915+105 model.

a = 0.50±0.04; 0.900±0.008; 0.99800±0.00003 (200-ks observation)

- Active galaxies are powered by supermassive BHs with jets
 - Radio polarization implies the magnetic field is aligned with jet
 - Different models for electron acceleration predict different dependence in X-rays

Region	MDP ₉₉
Core	1.4%
Knots	21%
C+ F+G	21/0
ULXs	25% 15%

- Galactic Center molecular clouds (MC) are known X-ray sources
 - If the MCs reflect X-rays from Sgr A* the X-radiation would be highly polarized perpendicular to plane of reflection and indicates the direction back to Sgr A*
 - If true implied Sgr A* X-ray luminosity was 106 larger ≈ 300 years ago
 - If not, still a discovery

- Study Magnetars (pulsing neutron stars with magnetic fields up to 10¹⁵ Gauss)
 - Non-linear QED predicts magnetized-vacuum birefringence
 - Refractive indices of the two polarization modes differ from 1 and from each other
 - Impacts polarization and position angle as functions of pulse phase, but not the flux
 - Example is 1RXS J170849.0-400910, with an 11-s pulse period
 - Can exclude QED-off at better than 99.9% confidence in 250-ks observation

- 504 Di Gesu +
- 505 Ferrazzo
- 507 Mikosincova +
- 511 Ratbeesh +