

XRISM: MISSION STATUS

Makoto S. Tashiro (ISAS/JAXA, Saitama University) on behalf of XRISM team

A NEW WORLD OF X-RAY SPECTROSCOPY SHOWED BY HITOMI

- N132D
- IGR J16318-4848
- RX J1856.5-3754
- G21.5-0.9
- Crab

• ... to be continued by XRISM

SCIENCE OF XRISM

- How does the large structure formed?
 - What forms and sustain the clusters of galaxies structure against gravity?
 - Gas pressure, turbulence, and their spatial distribution
- How was the elements and energy produced and distributed in the universe?
 - Metallicity of SNs and their remanants
 - Dissipation of the material
 - Velocity of elements of SNR metals and Accretion and outflow (winds) of AGNs, galaxies
- New astrophysics with X-ray micro-calorimeter

MISSION CONCEPT OF RECOVERY

- Recovery of X-ray fine spectroscopy
 - Recover the X-ray micro-calorimeter science, ASAP
 - Conservative combination with conventional CCD covering same energy band

Instrument	FOV/pix	ΔE (FWHM @6 keV)	Energy band
Resolve (XMA + X-ray microcalorimeter)	2.9′ □ / 6 x 6 pix	7 eV (goal 5 eV)	0.3 – 12 keV
Xtend (XMA + X-ray CCD)	38' □/ 1280 x 1280 pix	< 250 eV at EOL (< 200 eV at BOL)	0.4 - 13 keV

Mass	2.3 t
Dimension	7.9 m x 9.2 m x 3.1 m
Design life	3 years + cryogen free operation
Orbit	Altitude 575 +/- 15 km, Inclination 31 degree

DEVELOPMENT STATUS

STATUS: SPACECRAFT

- Major changes from Hitomi;
 - Attitude Control System
 - Sensors
 - STT → conventional and reliable model, → user 2 out of 3 sets
 - DSS → wider FOV, (cold) redundant system
 - Processor (software)

STATUS: RESOLVE

- Dewar
 - DWR Gate Valve open; XRISM introduces Eddy Current Dumper to reduce shock to thermal/optical filters
 - Mechanical Cooler microvibration isolator; XRISM introduces launch lock system to have tolerance to the new mechanical environment due to the dual launch.

STATUS: RESOLVE

Resolve sensor @ NASA/GSFC

Status

- FM Detector performance is as expected.
- FM Calorimeter Sensor Insert (CSI) has been fabricated → now on-ground calibration

Plan

- Pre-Shipment Review is held in the next week
- CSI will be shipped to Japan, after calibration
- CSI installation is planned in November in SHI.

STATUS: XTEND

- Hitomi-SXT/SXI worked well but light leakage through the HXT light path was observed
 - → XRISM Xtend
 - requires "darkness" in the Spacecraft
 - Improve process to reduce light leak through "pin holes" on the Optical Blocking Filter
- Status:
 - CCD chips; selected FM 4 chips out of 12
 - → now under calibration
 - Camera system; industrial CDR was finished
 Under production

@JAXA

Optical Light (peak 568n Irradiation

SUMMARY OF MISSION INSTRUMENT PRODUCTION

- Resolve
 - XMA (fabrication > assembly)
 - CSI
 - Detector Array (completed→ cal)
 - ADR (completed)
 - ApA (completed)
 - ADRC (assembly)
 - DWR, cooler, CD (assembly)
 - Xbox (nearly completed)
 - PSP (fabrication)

Resolve sensor

@ NASA/GSFC

Xtend

- XMA (fabrication > assembly)
- CCD (screening → calibration)
- SXI-S (procurement)
- Electronics (procurement/ assembly)

Mile stones...

2019-12 system integration 1 2020-04/05 mission I/F test 2020-07 system integration 2, 3, 4 2021-01 proto-flight test

2022-01 launch

OR SCIENCE PRODUCTION

TM2 2019-5 @ISAS/JAXA

Science Team meeting (SM1 2018-10-1/3 @Kanazawa)

phase-B phase-

2019

AOs for GO-1 (TBD)

SM3 (2020-5 @Michigan U)

SM2 (2019-10

@Ehime)

2020

PDR

CDR

2023 GO Program

2022 Launch & PV

XRISM Guest Scientists for PV (TBD)

phase 2021

Verifications & GND Calibration Fabrication/Integration

AOs for Participating Scientists

Hitomi Lessons Learned summary and share XARM proposal→JAXA, NASA, ESA collaboration

> "XARM" proposed Hitomi termination > LLs investigaton

Hitomi Failure

2016

phase-A SDR, project 2018

RFP

2017

International Team Meeting

(TM1) 2018-5 @Nara

MDR/SRR

XRISM team meeting #2 14-17 May 2019, Sagamihara, Japa

OPERATION PHASES AND GUEST OBSERVER PROGRAM

- Initial phase (launch to 3 months)
 - Critical operation (~ 1 week (TBD))
 - Commissioning (~ 12 weeks (TBD))
- Nominal phase(until 3 years after launch)
 - Initial calibration & performance verification (~ 6 months)
 - Nominal observation (GO phases)

(mission completion/extension review)

Latter phase

XRISM FOR YOUR SCIENCE

