High-redshift (z > 6) accreting SMBHs in the X-rays

F. Vito PUC (Chile) / CASSACA (China)

with W.N. Brandt, F.E. Bauer, F. Calura, R. Gilli, B. Luo, O. Shemmer, C. Vignali, G. Zamorani M. Brusa, F. Civano, A. Comastri, R. Nanni, N. Cappelluti, M. Volonteri

Testing self-similarity of QSO accretion physics up to z > 6

Witnessing SMBH accretion as close as possible to the initial conditions of SMBH formation

Selection of high-z QSO candidates

Optically selected z \gtrsim 6 QSOs are extremely massive!

log(M_BH/Msun)~9-10 (with large uncertainties)

(e.g., Mortlock+11, Wu+15, Banados+18)

How can you form such massive BH in <1Gyr??

Models require fast accretion (i.e., high Eddington ratio λ_{EDD}), possibly in heavily obscured conditions, to match the observed M_{BH} at z=6-7.5

Testing accretion mode (accretion disk + hot corona)

X-ray photon index (Γ) as a probe of accretion

 $N(E) \propto E^{-\Gamma}$

F includes information on the physical conditions (e.g. temperature) of the hot corona and its interplay with the accretion disk

New Chandra observations of 10 z>6 QSOs

Chandra Cycle 19 Large Program (~430 ks, PI: Brandt)

	properties of			archivar it ray obse		Vito+19b.			
ID (1)	\mathbf{RA}	DEC (3)	z (4)	$M_{1450\text{\AA}}(m_{1450\text{\AA}})$	$\log(\frac{L_{bol}}{L_{\odot}})$	$\log(\frac{M_{BH}}{M_{\odot}})$	λ_{Edd}	Ref. $(\operatorname{disc.}/z/M_{BH})$	R (10)
(1)	(2)	(3)	(4)	(3)	(0)	(7)	(8)	(3)	(10)
				New targets					
CFHQSJ0050+3445	00:50:06.67	+34:45:21.65	6.253 (Mg II)	-26.70 (20.11)	13.45	9.41	0.34	W10/W10/W10	< 11.
VIKJ0109 - 3047	01:09:53.13	-30:47:26.31	6.7909 ([C II])	-25.64 (21.30)	13.06	9.12	0.27	V13/V16/M17	< 34.
PSOJ036+03	02:26:01.87	+03:02:59.4:	6.541 ([C II])	-27.33 (19.55)	13.67	9.48	0.48	V15/B15/M17	< 2.1
VIKJ0305-3150	03:05:16.92	-31:50:55.9	6.6145 ([C II])	-26.18(20.72)	13.26	8.95	0.63	V13/V16/M17	< 20.
SDSSJ0842+1218	08:42:29.43	+12:18:50.58	$6.0763 ([C II])^{a}$	$-26.91 \ (19.86)^{a}$	13.52	9.29	0.53	dR11/D18/dR11**	< 1.3
PSOJ167-13	11:10:33.98	-13:29:45.60	$6.5148 ([C II])^{b}$	-25.57(21.25)	13.03	8.48	1.11	V15/M17/M17	< 34.
CFHQSJ1509 - 1749	15:09:41.78	-17:49:26.80	$6.1225 \ ([C \ II])^a$	$-27.14 \ (19.64)^a$	13.61	9.47	0.42	$W07/D18/W10^{a}$	< 1.2
CFHQSJ1641+3755	16:41:21.73	+37:55:20.15	6.047 (Mg II)	-25.67 (21.09)	13.07	8.38	1.51	W07/W10/W10	< 10.
PSOJ338+29	22:32:55.14	+29:30:32.31	6.666 ([C II])	-26.14(20.78)	13.24	9.43	0.20	V15/M17/M17	< 21.
SDSSJ2310+1855	23:10:38.89	+18:55:19.93	6.0031 ([C II])	-27.80 (18.95)	13.85	9.62	0.52	Wa13/Wa13/J16	< 3.9
			250s w	vith previous X-ray data					
SDSSJ0100+2802	01:00:13.02	+28:02:25.92	6.3258 ([C II])	-29.14 (17.69)	14.33	10.03	0.62	$Wu15/Wa16/Wu15^*$	< 1.2
ATLASJ0142-3327	01:42:43.73	-33:27:45.47	6.379 ([C II]) ^a	$-27.82 (19.02)^{a}$	13.85			C15/D18/	< 4.2
CFHQSJ0210-0456	02:10:13.19	-04:56:20.90	6.4323 ([C II])	-24.53 (22.33)	12.65	7.90	1.76	W10/W13/W10	< 28.
CFHQSJ0216-0455	02:16:27.81	-04:55:34.10	6.01 (Ly α)	-22.49 (24.27)	11.91			W09/W09/—	< 23.
SDSSJ0303 - 0019	03:03:31.40	-00:19:12.90	6.078 (Mg II)	-25.56 (21.21)	13.03	8.61	0.81	J08/K09/dR11*	< 11.
SDSSJ1030 + 0524	10:30:27.11	+05:24:55.06	6.308 (Mg II)	-26.99 (19.84)	13.55	9.21	0.68	$F01/K07/dR11^*$	< 1.5
$SDSSJ1048 + 4637^{c}$	10:48:45.07	+46:37:18.55	6.2284 (CO 6-5)	-27.24 (19.57)	13.64	9.55	0.38	$F03/Wa10/dR11^*$	< 0.5
ULASJ1120 + 0641	1:20:01.48	+06:41:24.30	7.0842 ([C II])	-26.63 (20.38)	13.42	9.39	0.33	M11/V12/M17	< 0.7
SDSSJ1148+5251	11:48:16.65	52:51:50.39	6.4189 (CO 6-5)	-27.62 (19.24)	13.78	9.71	0.36	$F03/Wa11/dR11^*$	$0.7^{+0.}_{-0.}$
SDSSJ1306 + 0356	13:06:08.27	+03:56:26.36	6.0337 ([C II]) ^a	$-26.82 \ (19.94)^a$	13.49	9.30	0.48	$F01/D18/dR11^{*a}$	< 1.5
ULASJ1342 + 0928	13:42:08.27	+09:28:38.61	7.5413 ([C II])	-26.76(20.34)	13.47	8.89	1.14	B18a/V17/B18a	< 4.7
SDSSJ1602 + 4228	16:02:53.98	+42:28:24.94	6.09 (Ly α)	-26.94(19.83)	13.53			F04/F04/—	$0.8^{+0.}_{-0.}$
SDSSJ1623+3112	16:23:31.81	+31:12:00.53	6.26 ([C II])	-26.55(20.27)	13.39	9.15	0.54	$F04/Wa11/dR11^*$	< 2.3
SDSSJ1630+4012	16:30:33.90	+40:12:09.69	6.065 (Mg II)	-26.19(20.58)	13.26	8.96	0.62	F03/I04/dR11*	< 2.2
$HSCJ2216 - 0016^{\circ}$	22:16:44.47	-00:16:50.10	$6.10 (Lv \alpha)$	-23.62(23.16)	12.32			M16/M16/-	< 40

Now we have 25 *z*>6 QSOs with sensitive X-ray data and can start doing robust statistical analysis

New Chandra observations of 10 z>6 QSOs

Detected (P>0.99)

Vito+19b

Undetected

X-ray luminosity derived assuming "standard" Γ=2 (e.g., Shemmer+06, Nanni+17)

Vito+19b

 α_{ox} vs. L_{UV} relation extended at *z*>6

 $\Delta \alpha_{ox} = \alpha_{ox}(obs) - \alpha_{ox}(expect.)$

Bolometric correction: L_{bol} / L_X

Populate the luminosity regime b/w "normal" AGN and hyper-luminous QSOs, and extend at *z*>6

Larger K_{bol} at higher luminosities, in agreement with steeper α_{ox} at higher luminosities

Change of the accretion-disk/hot-corona physics/geometry at high luminosities/λ_{EDD} but same change at all redshifts

Average QSO photon index as a function of z

Assumed simple power-law emission, i.e. no reflection (ok for luminous type-1 QSOs, e.g. Comastri+92, Picconcelli+05, Shemmer+05)

 $\langle \Gamma \rangle \approx$ 2.1-2.2 for z>6 QSOs

Consistent with z=1-6 results

"Universal" accretion mode $(\lambda_{\text{EDD}} \text{ dependent}, \text{ redshift independent})$

(but hint of a steepening?)

Conclusion: No significant change of the QSO accretion physics at z>6

Ζ

X-ray to optical/sub-mm offset of ~1 arcsec, but significant positional uncertainty.

Why an optically type I QSO is heavily obscured in X-rays?

- WLQ?
- BALQSO?
- Changing look QSO?

XSHOOTER (11h) to obtain a rest-frame UV spectrum with a higher SNR

> Chandra (120ks) to confirm large N_H and

10-23

10-24

10-5

10-4 10-3 0.01

0.1

 λ_{obs} (μ m)

1

10²

10

10³

to match the observed M_{BH} at z=6-7.5

Extrapolate AGN X-ray LF at z~4 and compare with QSO UV LF at z~6

z~4 AGN XLF (Vito+14,+18)

- Includes ~all obscured AGN
- normalization $\propto (1+z)^{-6}$

z~6 QSO UV LF (Matsuoka+18)

Huge discovery space for current and future X-ray observatories!

XLF consistent with UV LF ning ~85% obscured QSOs at z~6 modulo extrapolation, LF uncertainties, etc.)

10⁻¹¹

Ĵ,